Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier design, DeepSeek-R1, together with the distilled versions varying from 1.5 to 70 billion parameters to construct, experiment, and properly scale your generative AI ideas on AWS.
In this post, we demonstrate how to get going with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the models too.
Overview of DeepSeek-R1
DeepSeek-R1 is a big language design (LLM) established by DeepSeek AI that uses support learning to boost reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A crucial identifying feature is its reinforcement knowing (RL) step, which was utilized to refine the model's reactions beyond the basic pre-training and tweak procedure. By including RL, DeepSeek-R1 can adjust more efficiently to user feedback and objectives, eventually improving both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) method, implying it's geared up to break down intricate inquiries and reason through them in a detailed way. This directed reasoning procedure allows the model to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT abilities, aiming to create structured actions while focusing on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has actually captured the market's attention as a flexible text-generation model that can be integrated into numerous workflows such as agents, rational thinking and data interpretation tasks.
DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture permits activation of 37 billion specifications, making it possible for efficient inference by routing questions to the most pertinent specialist "clusters." This method enables the model to concentrate on different issue domains while maintaining total performance. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to release the model. ml.p5e.48 xlarge comes with 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.
DeepSeek-R1 distilled designs bring the thinking abilities of the main R1 design to more effective architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller, more effective designs to simulate the behavior and thinking patterns of the larger DeepSeek-R1 design, using it as a teacher model.
You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we suggest releasing this model with guardrails in place. In this blog, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid hazardous content, and assess models against key security criteria. At the time of composing this blog, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can develop numerous guardrails tailored to various usage cases and use them to the DeepSeek-R1 model, improving user experiences and standardizing security controls throughout your generative AI applications.
Prerequisites
To release the DeepSeek-R1 model, you need access to an ml.p5e circumstances. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're utilizing ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, produce a limit boost demand and connect to your account group.
Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to use Amazon Bedrock Guardrails. For guidelines, see Establish authorizations to utilize guardrails for material filtering.
Implementing guardrails with the ApplyGuardrail API
Amazon Bedrock Guardrails allows you to introduce safeguards, prevent hazardous content, and evaluate designs against key security requirements. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to assess user inputs and design actions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.
The general flow includes the following actions: First, the system receives an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, wiki.asexuality.org it's sent out to the model for reasoning. After receiving the model's output, another guardrail check is used. If the output passes this final check, it's returned as the final result. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following areas demonstrate inference utilizing this API.
Deploy DeepSeek-R1 in Amazon Bedrock Marketplace
Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:
1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane.
At the time of composing this post, you can use the InvokeModel API to invoke the design. It doesn't support Converse APIs and other Amazon Bedrock tooling.
2. Filter for DeepSeek as a service provider and choose the DeepSeek-R1 design.
The design detail page supplies necessary details about the design's capabilities, prices structure, and execution guidelines. You can find detailed use instructions, consisting of sample API calls and code bits for combination. The model supports various text generation jobs, consisting of material development, code generation, and concern answering, using its support discovering optimization and CoT reasoning capabilities.
The page also consists of deployment options and licensing details to help you get going with DeepSeek-R1 in your applications.
3. To begin using DeepSeek-R1, choose Deploy.
You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated.
4. For Endpoint name, enter an endpoint name (in between 1-50 alphanumeric characters).
5. For Variety of instances, get in a number of instances (in between 1-100).
6. For Instance type, select your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended.
Optionally, you can set up advanced security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service role consents, and file encryption settings. For many use cases, the default settings will work well. However, for production implementations, you may desire to evaluate these settings to line up with your organization's security and compliance requirements.
7. Choose Deploy to begin using the model.
When the deployment is total, you can test DeepSeek-R1's capabilities straight in the Amazon Bedrock play area.
8. Choose Open in play area to access an interactive interface where you can explore different triggers and adjust design specifications like temperature level and maximum length.
When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for optimal results. For example, material for reasoning.
This is an excellent way to check out the design's reasoning and text generation capabilities before integrating it into your applications. The playground provides immediate feedback, helping you comprehend how the design reacts to various inputs and letting you fine-tune your triggers for optimum results.
You can quickly evaluate the design in the play area through the UI. However, to conjure up the released design programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.
Run reasoning using guardrails with the released DeepSeek-R1 endpoint
The following code example shows how to perform inference using a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have produced the guardrail, utilize the following code to implement guardrails. The script initializes the bedrock_runtime customer, sets up inference criteria, and sends out a request to generate text based upon a user timely.
Deploy DeepSeek-R1 with SageMaker JumpStart
SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, built-in algorithms, and prebuilt ML services that you can release with just a few clicks. With SageMaker JumpStart, you can tailor pre-trained designs to your usage case, with your data, and deploy them into production using either the UI or SDK.
Deploying DeepSeek-R1 model through SageMaker JumpStart provides two convenient approaches: utilizing the instinctive SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both methods to help you select the method that best matches your requirements.
Deploy DeepSeek-R1 through SageMaker JumpStart UI
Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:
1. On the SageMaker console, pick Studio in the navigation pane.
2. First-time users will be prompted to produce a domain.
3. On the SageMaker Studio console, select JumpStart in the navigation pane.
The design internet browser shows available designs, with details like the service provider name and model abilities.
4. Search for DeepSeek-R1 to see the DeepSeek-R1 model card.
Each design card shows crucial details, consisting of:
- Model name
- Provider name
- Task category (for example, Text Generation).
Bedrock Ready badge (if appropriate), indicating that this design can be registered with Amazon Bedrock, permitting you to use Amazon Bedrock APIs to invoke the design
5. Choose the model card to view the model details page.
The design details page consists of the following details:
- The model name and company details. Deploy button to deploy the design. About and Notebooks tabs with detailed details
The About tab consists of crucial details, such as:
- Model description. - License details.
- Technical requirements.
- Usage standards
Before you release the model, it's recommended to examine the model details and license terms to confirm compatibility with your use case.
6. Choose Deploy to continue with release.
7. For Endpoint name, utilize the instantly produced name or create a custom one.
- For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
- For Initial circumstances count, go into the number of circumstances (default: 1). Selecting appropriate circumstances types and counts is vital for cost and performance optimization. Monitor your deployment to change these settings as needed.Under Inference type, Real-time inference is chosen by default. This is optimized for sustained traffic and low latency.
- Review all configurations for precision. For this design, we strongly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
- Choose Deploy to deploy the model.
The deployment process can take numerous minutes to finish.
When deployment is total, your endpoint status will alter to InService. At this point, the design is ready to accept reasoning demands through the endpoint. You can keep track of the release development on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the implementation is total, you can invoke the model using a SageMaker runtime client and incorporate it with your applications.
Deploy DeepSeek-R1 using the SageMaker Python SDK
To get going with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to set up the SageMaker Python SDK and make certain you have the needed AWS permissions and environment setup. The following is a detailed code example that demonstrates how to release and use DeepSeek-R1 for reasoning programmatically. The code for deploying the design is provided in the Github here. You can clone the notebook and run from SageMaker Studio.
You can run extra demands against the predictor:
Implement guardrails and run reasoning with your SageMaker JumpStart predictor
Similar to Amazon Bedrock, you can also utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and implement it as revealed in the following code:
Tidy up
To avoid unwanted charges, complete the steps in this section to tidy up your resources.
Delete the Amazon Bedrock Marketplace implementation
If you released the design utilizing Amazon Bedrock Marketplace, total the following actions:
1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments. - In the Managed deployments area, locate the endpoint you wish to erase.
- Select the endpoint, and on the Actions menu, select Delete.
- Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
- Model name.
- Endpoint status
Delete the SageMaker JumpStart predictor
The SageMaker JumpStart model you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.
Conclusion
In this post, we checked out how you can access and release the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to begin. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting going with Amazon SageMaker JumpStart.
About the Authors
Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build using AWS services and sped up compute. Currently, he is concentrated on developing techniques for fine-tuning and enhancing the reasoning efficiency of big language models. In his spare time, Vivek enjoys hiking, watching motion pictures, and attempting different foods.
Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.
Jonathan Evans is an Expert Solutions Architect working on generative AI with the Third-Party Model Science group at AWS.
Banu Nagasundaram leads product, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about constructing services that help clients accelerate their AI journey and unlock business value.