|
|
|
@ -35,39 +35,46 @@ method of RawVec.
|
|
|
|
|
```rust,ignore
|
|
|
|
|
impl<T> RawVec<T> {
|
|
|
|
|
fn new() -> Self {
|
|
|
|
|
// !0 is usize::MAX. This branch should be stripped at compile time.
|
|
|
|
|
let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };
|
|
|
|
|
|
|
|
|
|
// This branch should be stripped at compile time.
|
|
|
|
|
let cap = if mem::size_of::<T>() == 0 {
|
|
|
|
|
std::usize::MAX
|
|
|
|
|
} else {
|
|
|
|
|
0
|
|
|
|
|
};
|
|
|
|
|
// Unique::empty() doubles as "unallocated" and "zero-sized allocation"
|
|
|
|
|
RawVec { ptr: Unique::empty(), cap: cap }
|
|
|
|
|
Self {
|
|
|
|
|
ptr: Unique::empty(),
|
|
|
|
|
cap,
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn grow(&mut self) {
|
|
|
|
|
unsafe {
|
|
|
|
|
let elem_size = mem::size_of::<T>();
|
|
|
|
|
|
|
|
|
|
// since we set the capacity to usize::MAX when elem_size is
|
|
|
|
|
// Since we set the capacity to `usize::MAX` for ZST is
|
|
|
|
|
// 0, getting to here necessarily means the Vec is overfull.
|
|
|
|
|
assert!(elem_size != 0, "capacity overflow");
|
|
|
|
|
assert!(mem::size_of::<T>() != 0, "capacity overflow");
|
|
|
|
|
|
|
|
|
|
let align = mem::align_of::<T>();
|
|
|
|
|
let layout = alloc::Layout::new::<T>();
|
|
|
|
|
|
|
|
|
|
let (new_cap, ptr) = if self.cap == 0 {
|
|
|
|
|
let ptr = heap::allocate(elem_size, align);
|
|
|
|
|
let ptr = alloc::alloc(layout);
|
|
|
|
|
(1, ptr)
|
|
|
|
|
} else {
|
|
|
|
|
let new_cap = 2 * self.cap;
|
|
|
|
|
let ptr = heap::reallocate(self.ptr.as_ptr() as *mut _,
|
|
|
|
|
self.cap * elem_size,
|
|
|
|
|
new_cap * elem_size,
|
|
|
|
|
align);
|
|
|
|
|
let new_cap = self.cap * 2;
|
|
|
|
|
let ptr = alloc::realloc(
|
|
|
|
|
self.ptr.as_ptr() as *mut u8,
|
|
|
|
|
layout,
|
|
|
|
|
new_cap * mem::size_of::<T>(),
|
|
|
|
|
);
|
|
|
|
|
(new_cap, ptr)
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// If allocate or reallocate fail, we'll get `null` back
|
|
|
|
|
if ptr.is_null() { oom() }
|
|
|
|
|
if ptr.is_null() {
|
|
|
|
|
alloc::handle_alloc_error(layout);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
self.ptr = Unique::new(ptr as *mut _);
|
|
|
|
|
self.ptr = Unique::new_unchecked(ptr as *mut T);
|
|
|
|
|
self.cap = new_cap;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -75,15 +82,10 @@ impl<T> RawVec<T> {
|
|
|
|
|
|
|
|
|
|
impl<T> Drop for RawVec<T> {
|
|
|
|
|
fn drop(&mut self) {
|
|
|
|
|
let elem_size = mem::size_of::<T>();
|
|
|
|
|
|
|
|
|
|
// don't free zero-sized allocations, as they were never allocated.
|
|
|
|
|
if self.cap != 0 && elem_size != 0 {
|
|
|
|
|
let align = mem::align_of::<T>();
|
|
|
|
|
|
|
|
|
|
let num_bytes = elem_size * self.cap;
|
|
|
|
|
// Do not free zero-sized allocations, as they were never allocated.
|
|
|
|
|
if self.cap != 0 && mem::size_of::<T>() != 0 {
|
|
|
|
|
unsafe {
|
|
|
|
|
heap::deallocate(self.ptr.as_ptr() as *mut _, num_bytes, align);
|
|
|
|
|
alloc::dealloc(self.ptr.as_ptr() as *mut u8, alloc::Layout::new::<T>());
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -106,15 +108,15 @@ increment, and then cast them back:
|
|
|
|
|
```rust,ignore
|
|
|
|
|
impl<T> RawValIter<T> {
|
|
|
|
|
unsafe fn new(slice: &[T]) -> Self {
|
|
|
|
|
RawValIter {
|
|
|
|
|
Self {
|
|
|
|
|
start: slice.as_ptr(),
|
|
|
|
|
end: if mem::size_of::<T>() == 0 {
|
|
|
|
|
((slice.as_ptr() as usize) + slice.len()) as *const _
|
|
|
|
|
((slice.as_ptr() as usize) + slice.len()) as *const T
|
|
|
|
|
} else if slice.len() == 0 {
|
|
|
|
|
slice.as_ptr()
|
|
|
|
|
} else {
|
|
|
|
|
slice.as_ptr().offset(slice.len() as isize)
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
@ -129,14 +131,14 @@ map size 0 to divide by 1.
|
|
|
|
|
```rust,ignore
|
|
|
|
|
impl<T> Iterator for RawValIter<T> {
|
|
|
|
|
type Item = T;
|
|
|
|
|
fn next(&mut self) -> Option<T> {
|
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
|
|
|
if self.start == self.end {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
|
|
|
|
unsafe {
|
|
|
|
|
let result = ptr::read(self.start);
|
|
|
|
|
self.start = if mem::size_of::<T>() == 0 {
|
|
|
|
|
(self.start as usize + 1) as *const _
|
|
|
|
|
(self.start as usize + 1) as *const T
|
|
|
|
|
} else {
|
|
|
|
|
self.start.offset(1)
|
|
|
|
|
};
|
|
|
|
@ -146,21 +148,24 @@ impl<T> Iterator for RawValIter<T> {
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
|
|
|
let elem_size = mem::size_of::<T>();
|
|
|
|
|
let len = (self.end as usize - self.start as usize)
|
|
|
|
|
/ if elem_size == 0 { 1 } else { elem_size };
|
|
|
|
|
let elem_size = if mem::size_of::<T>() == 0 {
|
|
|
|
|
1
|
|
|
|
|
} else {
|
|
|
|
|
mem::size_of::<T>()
|
|
|
|
|
};
|
|
|
|
|
let len = (self.end as usize - self.start as usize) / elem_size;
|
|
|
|
|
(len, Some(len))
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
impl<T> DoubleEndedIterator for RawValIter<T> {
|
|
|
|
|
fn next_back(&mut self) -> Option<T> {
|
|
|
|
|
fn next_back(&mut self) -> Option<Self::Item> {
|
|
|
|
|
if self.start == self.end {
|
|
|
|
|
None
|
|
|
|
|
} else {
|
|
|
|
|
unsafe {
|
|
|
|
|
self.end = if mem::size_of::<T>() == 0 {
|
|
|
|
|
(self.end as usize - 1) as *const _
|
|
|
|
|
(self.end as usize - 1) as *const T
|
|
|
|
|
} else {
|
|
|
|
|
self.end.offset(-1)
|
|
|
|
|
};
|
|
|
|
|