# The Final Code ```rust #![feature(unique)] #![feature(alloc, heap_api)] extern crate alloc; use std::ptr::{Unique, self}; use std::mem; use std::ops::{Deref, DerefMut}; use std::marker::PhantomData; use alloc::heap; struct RawVec { ptr: Unique, cap: usize, } impl RawVec { fn new() -> Self { // !0 is usize::MAX. This branch should be stripped at compile time. let cap = if mem::size_of::() == 0 { !0 } else { 0 }; // Unique::empty() doubles as "unallocated" and "zero-sized allocation" RawVec { ptr: Unique::empty(), cap: cap } } fn grow(&mut self) { unsafe { let elem_size = mem::size_of::(); // since we set the capacity to usize::MAX when elem_size is // 0, getting to here necessarily means the Vec is overfull. assert!(elem_size != 0, "capacity overflow"); let align = mem::align_of::(); let (new_cap, ptr) = if self.cap == 0 { let ptr = heap::allocate(elem_size, align); (1, ptr) } else { let new_cap = 2 * self.cap; let ptr = heap::reallocate(self.ptr.as_ptr() as *mut _, self.cap * elem_size, new_cap * elem_size, align); (new_cap, ptr) }; // If allocate or reallocate fail, we'll get `null` back if ptr.is_null() { oom() } self.ptr = Unique::new(ptr as *mut _); self.cap = new_cap; } } } impl Drop for RawVec { fn drop(&mut self) { let elem_size = mem::size_of::(); if self.cap != 0 && elem_size != 0 { let align = mem::align_of::(); let num_bytes = elem_size * self.cap; unsafe { heap::deallocate(self.ptr.as_ptr() as *mut _, num_bytes, align); } } } } pub struct Vec { buf: RawVec, len: usize, } impl Vec { fn ptr(&self) -> *mut T { self.buf.ptr.as_ptr() } fn cap(&self) -> usize { self.buf.cap } pub fn new() -> Self { Vec { buf: RawVec::new(), len: 0 } } pub fn push(&mut self, elem: T) { if self.len == self.cap() { self.buf.grow(); } unsafe { ptr::write(self.ptr().offset(self.len as isize), elem); } // Can't fail, we'll OOM first. self.len += 1; } pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { self.len -= 1; unsafe { Some(ptr::read(self.ptr().offset(self.len as isize))) } } } pub fn insert(&mut self, index: usize, elem: T) { assert!(index <= self.len, "index out of bounds"); if self.cap() == self.len { self.buf.grow(); } unsafe { if index < self.len { ptr::copy(self.ptr().offset(index as isize), self.ptr().offset(index as isize + 1), self.len - index); } ptr::write(self.ptr().offset(index as isize), elem); self.len += 1; } } pub fn remove(&mut self, index: usize) -> T { assert!(index < self.len, "index out of bounds"); unsafe { self.len -= 1; let result = ptr::read(self.ptr().offset(index as isize)); ptr::copy(self.ptr().offset(index as isize + 1), self.ptr().offset(index as isize), self.len - index); result } } pub fn into_iter(self) -> IntoIter { unsafe { let iter = RawValIter::new(&self); let buf = ptr::read(&self.buf); mem::forget(self); IntoIter { iter: iter, _buf: buf, } } } pub fn drain(&mut self) -> Drain { unsafe { let iter = RawValIter::new(&self); // this is a mem::forget safety thing. If Drain is forgotten, we just // leak the whole Vec's contents. Also we need to do this *eventually* // anyway, so why not do it now? self.len = 0; Drain { iter: iter, vec: PhantomData, } } } } impl Drop for Vec { fn drop(&mut self) { while let Some(_) = self.pop() {} // allocation is handled by RawVec } } impl Deref for Vec { type Target = [T]; fn deref(&self) -> &[T] { unsafe { ::std::slice::from_raw_parts(self.ptr(), self.len) } } } impl DerefMut for Vec { fn deref_mut(&mut self) -> &mut [T] { unsafe { ::std::slice::from_raw_parts_mut(self.ptr(), self.len) } } } struct RawValIter { start: *const T, end: *const T, } impl RawValIter { unsafe fn new(slice: &[T]) -> Self { RawValIter { start: slice.as_ptr(), end: if mem::size_of::() == 0 { ((slice.as_ptr() as usize) + slice.len()) as *const _ } else if slice.len() == 0 { slice.as_ptr() } else { slice.as_ptr().offset(slice.len() as isize) } } } } impl Iterator for RawValIter { type Item = T; fn next(&mut self) -> Option { if self.start == self.end { None } else { unsafe { let result = ptr::read(self.start); self.start = if mem::size_of::() == 0 { (self.start as usize + 1) as *const _ } else { self.start.offset(1) }; Some(result) } } } fn size_hint(&self) -> (usize, Option) { let elem_size = mem::size_of::(); let len = (self.end as usize - self.start as usize) / if elem_size == 0 { 1 } else { elem_size }; (len, Some(len)) } } impl DoubleEndedIterator for RawValIter { fn next_back(&mut self) -> Option { if self.start == self.end { None } else { unsafe { self.end = if mem::size_of::() == 0 { (self.end as usize - 1) as *const _ } else { self.end.offset(-1) }; Some(ptr::read(self.end)) } } } } pub struct IntoIter { _buf: RawVec, // we don't actually care about this. Just need it to live. iter: RawValIter, } impl Iterator for IntoIter { type Item = T; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl DoubleEndedIterator for IntoIter { fn next_back(&mut self) -> Option { self.iter.next_back() } } impl Drop for IntoIter { fn drop(&mut self) { for _ in &mut *self {} } } pub struct Drain<'a, T: 'a> { vec: PhantomData<&'a mut Vec>, iter: RawValIter, } impl<'a, T> Iterator for Drain<'a, T> { type Item = T; fn next(&mut self) -> Option { self.iter.next_back() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, T> DoubleEndedIterator for Drain<'a, T> { fn next_back(&mut self) -> Option { self.iter.next_back() } } impl<'a, T> Drop for Drain<'a, T> { fn drop(&mut self) { // pre-drain the iter for _ in &mut self.iter {} } } /// Abort the process, we're out of memory! /// /// In practice this is probably dead code on most OSes fn oom() { ::std::process::exit(-9999); } # fn main() {} ```