# The Final Code ```rust use std::alloc::{self, Layout}; use std::marker::PhantomData; use std::mem; use std::ops::{Deref, DerefMut}; use std::ptr::{self, NonNull}; struct RawVec { ptr: NonNull, cap: usize, } unsafe impl Send for RawVec {} unsafe impl Sync for RawVec {} impl RawVec { fn new() -> Self { // !0 is usize::MAX. This branch should be stripped at compile time. let cap = if mem::size_of::() == 0 { !0 } else { 0 }; // `NonNull::dangling()` doubles as "unallocated" and "zero-sized allocation" RawVec { ptr: NonNull::dangling(), cap: cap, } } fn grow(&mut self) { // since we set the capacity to usize::MAX when T has size 0, // getting to here necessarily means the Vec is overfull. assert!(mem::size_of::() != 0, "capacity overflow"); let (new_cap, new_layout) = if self.cap == 0 { (1, Layout::array::(1).unwrap()) } else { // This can't overflow because we ensure self.cap <= isize::MAX. let new_cap = 2 * self.cap; // `Layout::array` checks that the number of bytes is <= usize::MAX, // but this is redundant since old_layout.size() <= isize::MAX, // so the `unwrap` should never fail. let new_layout = Layout::array::(new_cap).unwrap(); (new_cap, new_layout) }; // Ensure that the new allocation doesn't exceed `isize::MAX` bytes. assert!( new_layout.size() <= isize::MAX as usize, "Allocation too large" ); let new_ptr = if self.cap == 0 { unsafe { alloc::alloc(new_layout) } } else { let old_layout = Layout::array::(self.cap).unwrap(); let old_ptr = self.ptr.as_ptr() as *mut u8; unsafe { alloc::realloc(old_ptr, old_layout, new_layout.size()) } }; // If allocation fails, `new_ptr` will be null, in which case we abort. self.ptr = match NonNull::new(new_ptr as *mut T) { Some(p) => p, None => alloc::handle_alloc_error(new_layout), }; self.cap = new_cap; } } impl Drop for RawVec { fn drop(&mut self) { let elem_size = mem::size_of::(); if self.cap != 0 && elem_size != 0 { unsafe { alloc::dealloc( self.ptr.as_ptr() as *mut u8, Layout::array::(self.cap).unwrap(), ); } } } } pub struct Vec { buf: RawVec, len: usize, } impl Vec { fn ptr(&self) -> *mut T { self.buf.ptr.as_ptr() } fn cap(&self) -> usize { self.buf.cap } pub fn new() -> Self { Vec { buf: RawVec::new(), len: 0, } } pub fn push(&mut self, elem: T) { if self.len == self.cap() { self.buf.grow(); } unsafe { ptr::write(self.ptr().add(self.len), elem); } // Can't overflow, we'll OOM first. self.len += 1; } pub fn pop(&mut self) -> Option { if self.len == 0 { None } else { self.len -= 1; unsafe { Some(ptr::read(self.ptr().add(self.len))) } } } pub fn insert(&mut self, index: usize, elem: T) { assert!(index <= self.len, "index out of bounds"); if self.cap() == self.len { self.buf.grow(); } unsafe { ptr::copy( self.ptr().add(index), self.ptr().add(index + 1), self.len - index, ); ptr::write(self.ptr().add(index), elem); self.len += 1; } } pub fn remove(&mut self, index: usize) -> T { assert!(index < self.len, "index out of bounds"); unsafe { self.len -= 1; let result = ptr::read(self.ptr().add(index)); ptr::copy( self.ptr().add(index + 1), self.ptr().add(index), self.len - index, ); result } } pub fn drain(&mut self) -> Drain { unsafe { let iter = RawValIter::new(&self); // this is a mem::forget safety thing. If Drain is forgotten, we just // leak the whole Vec's contents. Also we need to do this *eventually* // anyway, so why not do it now? self.len = 0; Drain { iter: iter, vec: PhantomData, } } } } impl Drop for Vec { fn drop(&mut self) { while let Some(_) = self.pop() {} // deallocation is handled by RawVec } } impl Deref for Vec { type Target = [T]; fn deref(&self) -> &[T] { unsafe { std::slice::from_raw_parts(self.ptr(), self.len) } } } impl DerefMut for Vec { fn deref_mut(&mut self) -> &mut [T] { unsafe { std::slice::from_raw_parts_mut(self.ptr(), self.len) } } } impl IntoIterator for Vec { type Item = T; type IntoIter = IntoIter; fn into_iter(self) -> IntoIter { unsafe { let iter = RawValIter::new(&self); let buf = ptr::read(&self.buf); mem::forget(self); IntoIter { iter: iter, _buf: buf, } } } } struct RawValIter { start: *const T, end: *const T, } impl RawValIter { unsafe fn new(slice: &[T]) -> Self { RawValIter { start: slice.as_ptr(), end: if mem::size_of::() == 0 { ((slice.as_ptr() as usize) + slice.len()) as *const _ } else if slice.len() == 0 { slice.as_ptr() } else { slice.as_ptr().add(slice.len()) }, } } } impl Iterator for RawValIter { type Item = T; fn next(&mut self) -> Option { if self.start == self.end { None } else { unsafe { if mem::size_of::() == 0 { self.start = (self.start as usize + 1) as *const _; Some(ptr::read(NonNull::::dangling().as_ptr())) } else { let old_ptr = self.start; self.start = self.start.offset(1); Some(ptr::read(old_ptr)) } } } } fn size_hint(&self) -> (usize, Option) { let elem_size = mem::size_of::(); let len = (self.end as usize - self.start as usize) / if elem_size == 0 { 1 } else { elem_size }; (len, Some(len)) } } impl DoubleEndedIterator for RawValIter { fn next_back(&mut self) -> Option { if self.start == self.end { None } else { unsafe { if mem::size_of::() == 0 { self.end = (self.end as usize - 1) as *const _; Some(ptr::read(NonNull::::dangling().as_ptr())) } else { self.end = self.end.offset(-1); Some(ptr::read(self.end)) } } } } } pub struct IntoIter { _buf: RawVec, // we don't actually care about this. Just need it to live. iter: RawValIter, } impl Iterator for IntoIter { type Item = T; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl DoubleEndedIterator for IntoIter { fn next_back(&mut self) -> Option { self.iter.next_back() } } impl Drop for IntoIter { fn drop(&mut self) { for _ in &mut *self {} } } pub struct Drain<'a, T: 'a> { vec: PhantomData<&'a mut Vec>, iter: RawValIter, } impl<'a, T> Iterator for Drain<'a, T> { type Item = T; fn next(&mut self) -> Option { self.iter.next() } fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } impl<'a, T> DoubleEndedIterator for Drain<'a, T> { fn next_back(&mut self) -> Option { self.iter.next_back() } } impl<'a, T> Drop for Drain<'a, T> { fn drop(&mut self) { // pre-drain the iter for _ in &mut *self {} } } # # fn main() { # tests::create_push_pop(); # tests::iter_test(); # tests::test_drain(); # tests::test_zst(); # println!("All tests finished OK"); # } # # mod tests { # use super::*; # # pub fn create_push_pop() { # let mut v = Vec::new(); # v.push(1); # assert_eq!(1, v.len()); # assert_eq!(1, v[0]); # for i in v.iter_mut() { # *i += 1; # } # v.insert(0, 5); # let x = v.pop(); # assert_eq!(Some(2), x); # assert_eq!(1, v.len()); # v.push(10); # let x = v.remove(0); # assert_eq!(5, x); # assert_eq!(1, v.len()); # } # # pub fn iter_test() { # let mut v = Vec::new(); # for i in 0..10 { # v.push(Box::new(i)) # } # let mut iter = v.into_iter(); # let first = iter.next().unwrap(); # let last = iter.next_back().unwrap(); # drop(iter); # assert_eq!(0, *first); # assert_eq!(9, *last); # } # # pub fn test_drain() { # let mut v = Vec::new(); # for i in 0..10 { # v.push(Box::new(i)) # } # { # let mut drain = v.drain(); # let first = drain.next().unwrap(); # let last = drain.next_back().unwrap(); # assert_eq!(0, *first); # assert_eq!(9, *last); # } # assert_eq!(0, v.len()); # v.push(Box::new(1)); # assert_eq!(1, *v.pop().unwrap()); # } # # pub fn test_zst() { # let mut v = Vec::new(); # for _i in 0..10 { # v.push(()) # } # # let mut count = 0; # # for _ in v.into_iter() { # count += 1 # } # # assert_eq!(10, count); # } # } ```