Merge pull request #144 from 1132719438/main

Add content in functional-programing chapter
pull/147/head
Sunface 3 years ago committed by GitHub
commit 46884d8e5e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -268,7 +268,7 @@ where
}
```
上面的缓存有一个很大的问题:只支持`u32`类型的值,若我们想要缓存`String`类型,显然就行不通了,因此需要将`u32`替换成泛型`E`,该练习就留给读者自己完成,具体代码可以参考[这里](https://github.com/sunface/rust-course/blob/main/course-solutions/closure.md)
上面的缓存有一个很大的问题:只支持`u32`类型的值,若我们想要缓存`String`类型,显然就行不通了,因此需要将`u32`替换成泛型`E`,该练习就留给读者自己完成,具体代码可以参考[这里](https://github.com/sunface/rust-course/blob/main/book/solutions/closure.md)
## 捕获作用域中的值
@ -378,6 +378,8 @@ true
false
```
如果你想强制闭包取得捕获变量的所有权,可以在参数列表前添加`move`关键字,这种用法通常用于闭包的生命周期大于捕获变量的生命周期时,例如将闭包返回或移入其他线程。
2. `FnMut`, 它以可变借用的方式捕获了环境中的值,因此可以修改该值:
```rust
fn main() {
@ -510,7 +512,7 @@ fn exec<F: FnOnce()>(f: F) {
##### 三种Fn的关系
实际上一个闭包并不仅仅实现某一种Fn特征规则如下
- 所有的闭包都实现了`FnOnce`特征,因此任何一个闭包都至少可以被调用一次
- 没有使用`move`的闭包实现了`FnMut`特征
- 没有移出所捕获变量的所有权的闭包实现了`FnMut`特征
- 不需要对捕获变量进行改变的闭包实现了`Fn`特征
用一段代码来简单诠释上述规则:
@ -540,6 +542,32 @@ fn exec2<F: Fn()>(f: F) {
虽然,闭包只是对`s`进行了不可变借用,实际上,它可以适用于任何一种`Fn`特征:三个`exec`函数说明了一切。强烈建议读者亲自动手试试各种情况下使用的`Fn`特征,更有助于加深这方面的理解。
关于第二条规则,有如下示例:
```rust
fn main() {
let mut s = String::new();
let update_string = |str| -> String {s.push_str(str); s };
exec(update_string);
}
fn exec<'a, F: FnMut(&'a str) -> String>(mut f: F) {
f("hello");
}
```
```console
5 | let update_string = |str| -> String {s.push_str(str); s };
| ^^^^^^^^^^^^^^^ - closure is `FnOnce` because it moves the variable `s` out of its environment
| // 闭包实现了`FnOnce`,因为它从捕获环境中移出了变量`s`
| |
| this closure implements `FnOnce`, not `FnMut`
```
此例中,闭包从捕获环境中移出了变量`s`的所有权,因此这个闭包仅实现了`FnOnce`,未实现`FnMut`和`Fn`。再次印证之前讲的**一个闭包实现了哪种Fn特征取决于该闭包如何使用被捕获的变量而不是取决于闭包如何捕获它们**,跟是否使用`move`没有必然联系。
如果还是有疑惑?没关系,我们来看看这三个特征的简化版源码:
```rust
pub trait Fn<Args> : FnMut<Args> {
@ -596,7 +624,7 @@ help: use `impl Fn(i32) -> i32` as the return type, as all return paths are of t
嗯,编译器提示我们加一个`impl`关键字,哦,这样一说,读者可能就想起来了,`impl Trait`可以用来返回一个实现了指定特征的类型,那么这里`impl Fn(i32) -> i32`的返回值形式,说明我们要返回一个闭包类型,它实现了`Fn(i32) -> i32`特征。
完美解决,但是,在[特征]那一章,我们提到过,`impl Trait`的返回方式有一个非常大的局限,就是你只能返回同样的类型,例如:
完美解决,但是,在[特征](../../basic/trait/trait.md)那一章,我们提到过,`impl Trait`的返回方式有一个非常大的局限,就是你只能返回同样的类型,例如:
```rust
fn factory(x:i32) -> impl Fn(i32) -> i32 {

@ -395,7 +395,81 @@ println!("{}", val);
```
## 迭代器的性能
@todo
前面提到要完成集合遍历既可以使用for循环也可以使用迭代器那么二者之间该怎么选择呢性能有多大差距呢
理论分析不会有结果,直接测试最为靠谱:
```rust
#![feature(test)]
extern crate rand;
extern crate test;
fn sum_for(x: &[f64]) -> f64 {
let mut result: f64 = 0.0;
for i in 0..x.len() {
result += x[i];
}
result
}
fn sum_iter(x: &[f64]) -> f64 {
x.iter().sum::<f64>()
}
#[cfg(test)]
mod bench {
use test::Bencher;
use rand::{Rng,thread_rng};
use super::*;
const LEN: usize = 1024*1024;
fn rand_array(cnt: u32) -> Vec<f64> {
let mut rng = thread_rng();
(0..cnt).map(|_| rng.gen::<f64>()).collect()
}
#[bench]
fn bench_for(b: &mut Bencher) {
let samples = rand_array(LEN as u32);
b.iter(|| {
sum_for(&samples)
})
}
#[bench]
fn bench_iter(b: &mut Bencher) {
let samples = rand_array(LEN as u32);
b.iter(|| {
sum_iter(&samples)
})
}
}
```
上面的代码对比了for循环和迭代器iterator完成同样的求和任务的性能对比可以看到迭代器还要更快一点。
```console
test bench::bench_for ... bench: 998,331 ns/iter (+/- 36,250)
test bench::bench_iter ... bench: 983,858 ns/iter (+/- 44,673)
```
迭代器是 Rust 的 **零成本抽象**zero-cost abstractions之一意味着抽象并不会引入运行时开销这与 `Bjarne Stroustrup`C++ 的设计和实现者)在 `Foundations of C++2012` 中所定义的 **零开销**zero-overhead如出一辙
```
In general, C++ implementations obey the zero-overhead principle: What you dont use, you dont pay for.
And further: What you do use, you couldnt hand code any better.
一般来说C++的实现遵循零开销原则:没有使用时,你不必为其买单。
更进一步说,需要使用时,你也无法写出更优的代码了。
(翻译一下:用就完事了)
```
总之,迭代器是 Rust 受函数式语言启发而提供的高级语言特性可以写出更加简洁、逻辑清晰的代码。编译器还可以通过循环展开Unrolling、向量化、消除边界检查等优化手段使得迭代器和for循环都有极为高效的执行效率。
所以请放心大胆的使用迭代器,在获得更高的表达力的同时,也不会导致运行时的损失,何乐而不为呢!
## 学习其它方法
迭代器用的好不好,就在于你是否掌握了它的常用方法,且能活学活用,因此多多看看[标准库](https://doc.rust-lang.org/std/iter/trait.Iterator.html)是有好处的,只有知道有什么方法,在需要的时候你才能知道该用什么,就和算法学习一样。

Loading…
Cancel
Save