Update converse.md

pull/231/head
Jesse 3 years ago committed by GitHub
parent e739c354ec
commit 8e16844745
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,6 @@
# 类型转换
Rust是类型安全的语言因此在Rust中做类型转换不是一件简单的事这一章节我们将对Rust中的类型转换进行详尽讲解。
Rust 是类型安全的语言,因此在 Rust 中做类型转换不是一件简单的事这一章节我们将对Rust中的类型转换进行详尽讲解。
## `as`转换
先来看一段代码:
@ -15,24 +15,24 @@ fn main() {
}
```
能跟着这本书一直学习到这里说明你对Rust已经有了一定的理解那么一眼就能看出这段代码注定会报错因为`a`和`b`拥有不同的类型Rust不允许两种不同的类型进行比较。
能跟着这本书一直学习到这里,说明你对 Rust 已经有了一定的理解,那么一眼就能看出这段代码注定会报错,因为 `a` `b` 拥有不同的类型Rust 不允许两种不同的类型进行比较。
解决办法很简单,只要把`b`转换成`i32`类型即可,这里使用`as`操作符来完成:`if a < (b as i32) {...}`. 那么为什么不把`a`转换成`u16`类型呢?
解决办法很简单,只要把 `b` 转换成 `i32` 类型即可,Rust中内置了一些基本类型之间的转换这里使用 `as` 操作符来完成:`if a < (b as i32) {...}`。那么为什么不把 `a` 转换成 `u16` 类型呢?
因为每个类型能表达的大小不一样,如果把大的类型转换成小的类型,会造成错误, 因此我们需要把小的类型转换成大的类型,来避免这些问题的发生.
因为每个类型能表达的范围不一样,如果把大的类型转换成小的类型,会造成错误,因此我们需要把小的类型转换成大的类型,来避免这些问题的发生。
> 使用类型转换需要小心,因为如果执行以下操作`300_i32 as i8`,你将获得`44`这个值,而不是`300`,因为`i8`类型能表达的的最大值为`2^7 - 1`, 使用以下代码可以查看`i8`的最大值:
> 使用类型转换需要小心,因为如果执行以下操作 `300_i32 as i8`,你将获得 `44` 这个值,而不是 `300`,因为 `i8` 类型能表达的的最大值为 `2^7 - 1`,使用以下代码可以查看 `i8` 的最大值:
```rust
let a = i8::MAX;
println!("{}",a);
```
下面列出了常用的转换形式:
下面列出了常用的转换形式
```rust
fn main() {
let a = 3.1 as i8;
let b = 100_i8 as i32;
let c = 'a' as u8; // 将字符'a'转换为整数, 97
let c = 'a' as u8; // 将字符'a'转换为整数97
println!("{},{},{}",a,b,c)
}
@ -43,7 +43,7 @@ fn main() {
let mut values: [i32; 2] = [1, 2];
let p1: *mut i32 = values.as_mut_ptr();
let first_address = p1 as usize; // 将p1内存地址转换为一个整数
let second_address = first_address + 4; // 4 == std:mem::size_of::<i32>(), i32类型占用4个字节因此将内存地址 + 4
let second_address = first_address + 4; // 4 == std:mem::size_of::<i32>()i32类型占用4个字节因此将内存地址 + 4
let p2 = second_address as *mut i32; // 访问该地址指向的下一个整数p2
unsafe {
*p2 += 1;
@ -55,17 +55,17 @@ assert_eq!(values[1], 3);
1. 数组切片原生指针之间的转换,不会改变数组占用的内存字节数,尽管数组元素的类型发生了改变:
```rust
fn main() {
let a: *const [u16] = &[1,2,3,4,5];
let b = a as *const[u8];
assert_eq!(std::mem::size_of_val(&a),std::mem::size_of_val(&b))
let a: *const [u16] = &[1, 2, 3, 4, 5];
let b = a as *const [u8];
assert_eq!(std::mem::size_of_val(&a), std::mem::size_of_val(&b))
}
```
2. 转换不具有传递性
就算`e as U1 as U2`是合法的,也不能说明`e as U2`是合法的。
就算 `e as U1 as U2` 是合法的,也不能说明 `e as U2` 是合法的`e` 不能直接转换成 `U2`
## TryInto转换
在一些场景中,使用`as`关键字会有比较大的限制,因为你想要在类型转换上拥有完全的控制,例如处理转换错误,那么你将需要`TryInto`:
在一些场景中,使用 as` 关键字会有比较大的限制,如果你想要在类型转换上拥有完全的控制而不依赖内置的转换,例如处理转换错误,那么你将需要 `TryInto`
```rust
use std::convert::TryInto;
@ -82,11 +82,11 @@ fn main() {
}
```
上面代码中引入了`std::convert::TryInto`特征,但是却没有使用它,可能有些同学会为此困惑,主要原因在于**如果你要使用一个特征的方法,那么你需要引入该特征到当前的作用域中**,我们在上面用到了`try_into`方法因此需要引入对应的特征。但是Rust又提供了一个非常便利的办法把最常用的标准库中的特征通过[`std::prelude`](std::convert::TryInto)模块提前引入到当前作用域中,其中包括了`std::convert::TryInto`,你可以尝试删除第一行的代码`use ...`,看看是否会报错.
上面代码中引入了 `std::convert::TryInto` 特征,但是却没有使用它,可能有些同学会为此困惑,主要原因在于**如果你要使用一个特征的方法,那么你需要引入该特征到当前的作用域中**,我们在上面用到了 `try_into` 方法,因此需要引入对应的特征。但是 Rust 又提供了一个非常便利的办法,把最常用的标准库中的特征通过[`std::prelude`](std::convert::TryInto)模块提前引入到当前作用域中,其中包括了 `std::convert::TryInto`,你可以尝试删除第一行的代码 `use ...`,看看是否会报错。
`try_into`会尝试进行一次转换,如果失败,则会返回一个`Result`,然后你可以进行相应的错误处理,但是因为我们的例子只是为了快速测试,因此使用了`unwrap`方法,该方法在发现错误时,会直接调用`panic`导致程序的崩溃退出,在实际项目中,请不要这么使用,具体见[panic](./exception-error.md#panic)部分.
`try_into` 会尝试进行一次转换,如果失败,则会返回一个 `Result`,然后你可以进行相应的错误处理,但是因为我们的例子只是为了快速测试,因此使用了 `unwrap` 方法,该方法在发现错误时,会直接调用 `panic` 导致程序的崩溃退出,在实际项目中,请不要这么使用,具体见[panic](./exception-error.md#panic)部分
最主要的是`try_into`转换会捕获大类型向小类型转换时导致的溢出错误:
最主要的是 `try_into` 转换会捕获大类型向小类型转换时导致的溢出错误
```rust
fn main() {
let b: i16 = 1500;
@ -100,11 +100,11 @@ fn main() {
};
}
```
运行后输出如下`"out of range integral type conversion attempted"`, 在这里我们程序捕获了错误,编译器告诉我们类型范围超出的转换是不被允许的,因为我们试图把`1500_i16`转换为`u8`类型,后者明显不足以承载这么大的值。
运行后输出如下 `"out of range integral type conversion attempted"`在这里我们程序捕获了错误,编译器告诉我们类型范围超出的转换是不被允许的,因为我们试图把 `1500_i16` 转换为 `u8` 类型,后者明显不足以承载这么大的值。
## 通用类型转换
虽然`as`和`TryInto`很强大但是只能应用在数值类型上可是Rust有如此多的类型想要为这些类型实现转换我们需要另谋出路,先来看看在一个笨办法,将一个结构体转换为另外一个结构体:
虽然 `as` `TryInto` 很强大,但是只能应用在数值类型上,可是 Rust 有如此多的类型,想要为这些类型实现转换,我们需要另谋出路先来看看在一个笨办法,将一个结构体转换为另外一个结构体:
```rust
struct Foo {
x: u32,
@ -125,9 +125,9 @@ fn reinterpret(foo: Foo) -> Bar {
简单粗暴但是从另外一个角度来看也挺啰嗦的好在Rust为我们提供了更通用的方式来完成这个目的。
#### 强制类型转换
在某些情况下,类型是可以进行隐式强制转换的,但是这些转换其实弱化了Rust的类型系统它们的存在是为了让Rust在大多数场景可以工作(说白了,帮助用户省事),而不是报各种类型上的编译错误。
在某些情况下,类型是可以进行隐式强制转换的,这些转换弱化了 Rust 的类型系统它们的存在是为了让Rust在大多数场景可以工作(说白了,帮助用户省事),而不是报各种类型上的编译错误。
首先,在匹配特征时,不会做任何强制转换(除了方法)。如果有一个类型`T`可以强制转换为`U`,不代表`impl T`可以强制转换为`impl U`,例如以下的代码就无法通过编译检查:
首先,在匹配特征时,不会做任何强制转换(除了方法)。一个类型 `T` 可以强制转换为 `U`,不代表 `impl T` 可以强制转换为 `impl U`,例如下面的代码就无法通过编译检查:
```rust
trait Trait {}
@ -154,16 +154,16 @@ error[E0277]: the trait bound `&mut i32: Trait` is not satisfied
= note: `Trait` is implemented for `&i32`, but not for `&mut i32`
```
`&i32`实现了特征`Trait``&mut i32`可以转换为`&i32`,但是`&mut i32`依然无法作为`Trait`来使用。
`&i32`实现了特征`Trait``&mut i32`可以转换为`&i32`但是`&mut i32`依然无法作为`Trait`来使用(这一段没读懂,代码中的例子好像和上面的文字描述关系不大)
#### 点操作符
方法调用的点操作符看起来简单,实际上非常不简单,它在调用时,会发生很多魔法般的类型转换,例如:自动引用、自动解引用,强制类型转换直到类型能匹配等。
假设有一个方法`foo`,它有一个接收器(接收器就是`self`、`&self`、`&mut self`参数)。如果调用`value.foo()`,编译器在调用`foo`之前,需要决定到底使用哪个`Self`类型来调用。现在假设`value`拥有类型`T`.
假设有一个方法 `foo`,它有一个接收器(接收器就是 `self`、`&self`、`&mut self` 参数)。如果调用 `value.foo()`,编译器在调用 `foo` 之前,需要决定到底使用哪个 `Self` 类型来调用。现在假设 `value` 拥有类型 `T`
再进一步,我们使用[完全限定语法](https://course.rs/basic/trait/advance-trait.html#完全限定语法)来进行准确的函数调用:
1. 首先,编译器检查它是否可以直接调用`T::foo(value)`, 称之为**值方法调用**
2. 如果上一步调用无法完成(例如方法类型错误或者特征没有针对`Self`进行实现,上文提到过特征不能进行强制转换),那么编译器会尝试增加自动引用,以为着编译器会尝试以下调用:`<&T>::foo(value)`和`<&mut T>::foo(value)`, 称之为**引用方法调用**
1. 首先,编译器检查它是否可以直接调用`T::foo(value)`称之为**值方法调用**
2. 如果上一步调用无法完成(例如方法类型错误或者特征没有针对`Self`进行实现,上文提到过特征不能进行强制转换)那么编译器会尝试增加自动引用,以为着编译器会尝试以下调用:`<&T>::foo(value)`和`<&mut T>::foo(value)`称之为**引用方法调用**
3. 若上面两个方法依然不工作,编译器会试着解引用`T`,然后再进行尝试。这里使用了`Deref`特征 - 若`T: Deref<Target = U>`(`T`可以被解引用为`U`),那么编译器会使用`U`类型进行尝试,称之为**解引用方法调用**
4. 若`T`不能被解引用,且`T`是一个定长类型(在编译器类型长度是已知的),那么编译器也会尝试将`T`从定长类型转为不定长类型,例如将`[i32; 2]`转为`[i32]`
5. 若还是不行,那...没有那了,最后编译器大喊一声:汝欺我甚,不干了!
@ -175,10 +175,10 @@ let first_entry = array[0];
```
`array`数组的底层数据隐藏在了重重封锁之后,那么编译器如何使用`array[0]`这种数组原生访问语法通过重重封锁,准确的访问到数组中的第一个元素?
1. 首先,`array[0]`只是[`Index`](https://doc.rust-lang.org/std/ops/trait.Index.html)特征的语法糖: 编译器会将`array[0]`转换为`array.index(0)`调用, 当然在调用之前,编译器会先检查`array`是否实现了`Index`特征.
1. 首先,`array[0]`只是[`Index`](https://doc.rust-lang.org/std/ops/trait.Index.html)特征的语法糖: 编译器会将`array[0]`转换为`array.index(0)`调用当然在调用之前,编译器会先检查`array`是否实现了`Index`特征.
2. 接着,编译器检查`Rc<Box<[T; 3]>>`是否有否实现`Index`特征,结果是否,不仅如此,`&Rc<Box<[T; 3]>> `与`&mut Rc<Box<[T; 3]>>`也没有实现.
3. 上面的都不能工作,编译器开始对`Rc<Box<[T; 3]>>`进行解引用,把它转变成`Box<[T; 3]>`
4. 此时继续对`Box<[T; 3]>`进行上面的操作:`Box<[T; 3]>`, `&Box<[T; 3]>`, and `&mut Box<[T; 3]>`都没有实现`Index`特征,所以编译器开始对`Box<[T; 3]>`进行解引用,然后我们得到了`[T; 3]`
4. 此时继续对`Box<[T; 3]>`进行上面的操作:`Box<[T; 3]>``&Box<[T; 3]>`,和`&mut Box<[T; 3]>`都没有实现`Index`特征,所以编译器开始对`Box<[T; 3]>`进行解引用,然后我们得到了`[T; 3]`
5. `[T; 3]`以及它的各种引用都没有实现`Index`索引(是不是很反直觉:D在直觉中数组都可以通过索引访问实际上只有数组切片才可以!),它也不能再进行解引用,因此编译器只能祭出最后的大杀器:将定长转为不定长,因此`[T; 3]`被转换成`[T]`,也就是数组切片,它实现了`Index`特征,因此最终我们可以通过`index`方法访问到对应的元素.
过程看起来很复杂但是也还好挺好理解如果你先不能彻底理解也不要紧等以后对Rust理解更深了同时需要深入理解类型转换时再来细细品读本章。
@ -189,7 +189,7 @@ fn do_stuff<T: Clone>(value: &T) {
let cloned = value.clone();
}
```
上面例子中`cloned`的类型时什么?首先编译器检查能不能进行**值方法调用**, `value`的类型是`&T`,同时`clone`方法的签名也是`&T`: `fn clone(&T) -> T`,因此可以进行值方法调用, 再加上编译器知道了`T`实现了`Clone`,因此`cloned`的类型是`T`.
上面例子中`cloned`的类型时什么?首先编译器检查能不能进行**值方法调用**`value`的类型是`&T`,同时`clone`方法的签名也是`&T`: `fn clone(&T) -> T`,因此可以进行值方法调用,再加上编译器知道了`T`实现了`Clone`,因此`cloned`的类型是`T`。
如果`T: Clone`的特征约束被移除呢?
```rust
@ -200,7 +200,7 @@ fn do_stuff<T>(value: &T) {
首先,从直觉上来说,该方法会报错,因为`T`没有实现`Clone`特征,但是真实情况是什么呢?
我们先来推导一番。 首先通过值方法调用就不再可行,因此`T`没有实现`Clone`特征,也就无法调用`T`的`clone`方法。接着编译器尝试**引用方法调用**,此时`T`变成`&T`,在这种情况下,`clone`方法的签名如下:`fn clone(&&T) -> &T`, 记着我们现在对`value`进行了引用。 编译器发现`&T`实现了`Clone`类型(所有的引用类型都可以被复制,因为其实就是复制一份地址),因此可以可以推出`cloned`也是`&T`类型。
我们先来推导一番。 首先通过值方法调用就不再可行,因此`T`没有实现`Clone`特征,也就无法调用`T`的`clone`方法。接着编译器尝试**引用方法调用**,此时`T`变成`&T`,在这种情况下,`clone`方法的签名如下:`fn clone(&&T) -> &T`记着我们现在对`value`进行了引用。 编译器发现`&T`实现了`Clone`类型(所有的引用类型都可以被复制,因为其实就是复制一份地址),因此可以可以推出`cloned`也是`&T`类型。
最终,我们复制出一份引用指针,这很合理,因为值类型`T`没有实现`Clone`,只能去复制一个指针了。
@ -215,13 +215,13 @@ fn clone_containers<T>(foo: &Container<i32>, bar: &Container<T>) {
}
```
推断下上面的`foo_cloned`和`bar_cloned`是什么类型?提示: 关键在`Container`的泛型参数,一个是`i32`的具体类型,一个是泛型类型,其中`i32`实现了`Clone`,但是`T`并没有.
推断下上面的`foo_cloned`和`bar_cloned`是什么类型?提示: 关键在`Container`的泛型参数,一个是`i32`的具体类型一个是泛型类型,其中`i32`实现了`Clone`,但是`T`并没有.
首先要复习一下复杂类型派生`Clone`的规则:一个复杂类型能否派生`Clone`,需要它内部的所有子类型都能进行`Clone`。因此`Container<T>(Arc<T>)`是否实现`Clone`的关键在于`T`类型是否实现了`Clone`.
上面代码中,`Container<i32>`实现了`Clone`特征,因此编译器可以直接进行值方法调用,此时相当于直接调用`foo.clone`,其中`clone`的函数签名是`fn clone(&T) -> T`,由此可以看出`foo_cloned`的类型是`Container<i32>`.
上面代码中,`Container<i32>`实现了`Clone`特征,因此编译器可以直接进行值方法调用,此时相当于直接调用`foo.clone`,其中`clone`的函数签名是`fn clone(&T) -> T`由此可以看出`foo_cloned`的类型是`Container<i32>`.
然而,`bar_cloned`的类型却是`&Container<T>`.这个不合理啊,明明我们为`Container<T>`派生了`Clone`特征,因此它也应该是`Container<T>`类型才对。万事皆有因,我们先来看下`derive`宏最终生成的代码大概是啥样的:
然而`bar_cloned`的类型却是`&Container<T>`.这个不合理啊,明明我们为`Container<T>`派生了`Clone`特征,因此它也应该是`Container<T>`类型才对。万事皆有因,我们先来看下`derive`宏最终生成的代码大概是啥样的:
```rust
impl<T> Clone for Container<T> where T: Clone {
fn clone(&self) -> Self {
@ -232,7 +232,7 @@ impl<T> Clone for Container<T> where T: Clone {
从上面代码可以看出,派生`Clone`能实现的[根本是`T`实现了`Clone`特征](https://doc.rust-lang.org/std/clone/trait.Clone.html#derivable):`where T: Clone` 因此`Container<T>`就没有实现`Clone`特征。
编译器接着会去尝试引用方法调用,此时`&Container<T>`引用实现了`Clone`,最终可以得出`bar_cloned`的类型是`&Container<T>`,
编译器接着会去尝试引用方法调用,此时`&Container<T>`引用实现了`Clone`,最终可以得出`bar_cloned`的类型是`&Container<T>`
当然,也可以为`Container<T>`手动实现`Clone`特征:
```rust
@ -251,7 +251,7 @@ impl<T> Clone for Container<T> {
前方危险,敬请绕行!
类型系统,你让开!我要自己转换这些类型,不成功便成仁!虽然本书大多是关于安全的内容,我还是希望你能仔细考虑避免使用本章讲到的内容。这是你在 Rust 中所能做到的真真正正、彻彻底底、最最可怕的非安全行为, 在这里,所有的保护机制都形同虚设。
类型系统,你让开!我要自己转换这些类型,不成功便成仁!虽然本书大多是关于安全的内容,我还是希望你能仔细考虑避免使用本章讲到的内容。这是你在 Rust 中所能做到的真真正正、彻彻底底、最最可怕的非安全行为在这里,所有的保护机制都形同虚设。
先让你看看深渊长什么样,开开眼,然后你再决定是否深入: `mem::transmute<T, U>`将类型`T`直接转成类型`U`,唯一的要求就是,这两个类型占用同样大小的字节数!我的天,这也算限制?这简直就是无底线的转换好吧?看看会导致什么问题:
1. 首先也是最重要的,转换后创建一个任意类型的实例会造成无法想象的混乱,而且根本无法预测。不要把`3`转换成`bool`类型,就算你根本不会去使用该`bool`类型,也不要去这样转换。
@ -265,7 +265,7 @@ impl<T> Clone for Container<T> {
对于第5条你该如何知道内存的排列布局是一样的呢对于`repr(C)`类型和`repr(transparent)`类型来说,它们的布局是有着精确定义的。但是对于你自己的"普通却自信"的Rust类型`repr(Rust)`来说,它可不是有着精确定义的。甚至同一个泛型类型的不同实例都可以有不同的内存布局。`Vec<i32>`和`Vec<u32>`它们的字段可能有着相同的顺序也可能没有。对于数据排列布局来说什么能保证什么不能保证目前还在Rust开发组的[工作任务](https://rust-lang.github.io/unsafe-code-guidelines/layout.html)中呢.
你以为你之前凝视的是深渊吗?不,你凝视的只是深渊的大门。`mem::transmute_copy<T, U>`才是真正的深渊,它比之前的还要更加危险和不安全。它从`T`类型中拷贝出`U`类型所需的字节数,然后转换成`U`。`mem::transmute`尚有大小检查,能保证两个数据的内存大小一致,现在这哥们干脆连这个也丢了,只不过`U`的尺寸若是比`T`大,会是一个未定义行为。
你以为你之前凝视的是深渊吗?不,你凝视的只是深渊的大门。`mem::transmute_copy<T, U>`才是真正的深渊,它比之前的还要更加危险和不安全。它从`T`类型中拷贝出`U`类型所需的字节数,然后转换成`U`。`mem::transmute`尚有大小检查,能保证两个数据的内存大小一致,现在这哥们干脆连这个也丢了只不过`U`的尺寸若是比`T`大,会是一个未定义行为。
当然,你也可以通过原生指针转换和`unions`(todo!)获得所有的这些功能,但是你将无法获得任何编译提示或者检查。原生指针转换和`unions`也不是魔法,无法逃避上面说的规则。

Loading…
Cancel
Save