diff --git a/book/contents/basic/ownership/borrowing.md b/book/contents/basic/ownership/borrowing.md
index c4fb37d5..132e6c9c 100644
--- a/book/contents/basic/ownership/borrowing.md
+++ b/book/contents/basic/ownership/borrowing.md
@@ -1,14 +1,14 @@
# 引用与借用
-上节中提到,如果仅仅支持通过转移所有权的方式获取一个值,那会让程序变得复杂。 Rust能否像其它编程语言一样,使用某个变量的指针或者引用呢?答案是可以。
+上节中提到,如果仅仅支持通过转移所有权的方式获取一个值,那会让程序变得复杂。 Rust 能否像其它编程语言一样,使用某个变量的指针或者引用呢?答案是可以。
-Rust通过`借用(Borrowing)`这个概念来达成上述的目的: **获取变量的引用,称之为借用(borrowing)**。正如现实生活中,如果一个人拥有某样东西,你可以从他那里借来,当使用完毕后,也必须要物归原主.
+Rust 通过 `借用(Borrowing)` 这个概念来达成上述的目的: **获取变量的引用,称之为借用(borrowing)**。正如现实生活中,如果一个人拥有某样东西,你可以从他那里借来,当使用完毕后,也必须要物归原主。
### 引用与解引用
-常规引用是一个指针类型,指向了对象存储的内存地址。在下面代码中,我们创建一个`i32`值的引用`y`,然后使用解引用运算符来解出`y`所使用的值:
+常规引用是一个指针类型,指向了对象存储的内存地址。在下面代码中,我们创建一个 `i32` 值的引用 `y`,然后使用解引用运算符来解出 `y` 所使用的值:
```rust
fn main() {
let x = 5;
@@ -19,7 +19,7 @@ fn main() {
}
```
-变量 `x` 存放了一个 `i32` 值 `5`。`y`是 `x` 的一个引用。可以断言 `x` 等于 `5`。然而,如果希望对 `y` 的值做出断言,必须使用 `*y` 来解出引用所指向的值(也就是 **解引用**)。一旦解引用了 `y`,就可以访问 `y` 所指向的整型值并可以与 `5` 做比较。
+变量 `x` 存放了一个 `i32` 值 `5`。`y` 是 `x` 的一个引用。可以断言 `x` 等于 `5`。然而,如果希望对 `y` 的值做出断言,必须使用 `*y` 来解出引用所指向的值(也就是 **解引用**)。一旦解引用了 `y`,就可以访问 `y` 所指向的整型值并可以与 `5` 做比较。
相反如果尝试编写 `assert_eq!(5, y);`,则会得到如下编译错误:
@@ -38,7 +38,7 @@ error[E0277]: can't compare `{integer}` with `&{integer}`
### 不可变引用
-下面的代码,我们用s1的引用作为参数传递给`calculate_length`函数,而不是把s1的所有权转移给该函数:
+下面的代码,我们用 `s1` 的引用作为参数传递给 `calculate_length` 函数,而不是把 `s1` 的所有权转移给该函数:
```rust
fn main() {
let s1 = String::from("hello");
@@ -55,14 +55,14 @@ fn calculate_length(s: &String) -> usize {
能注意到两点:
1. 无需像上章一样:先通过函数参数传入所有权,然后再通过函数返回来传出所有权,代码更加简洁
-2. `calculate_length`的参数`s`类型从`String`变为`&String`
+2. `calculate_length` 的参数 `s` 类型从 `String` 变为 `&String`
-这里,`&`符号即是引用,它们允许你使用值,但是不获取所有权,如图所示:
+这里,`&` 符号即是引用,它们允许你使用值,但是不获取所有权,如图所示:
-通过`&s1`语法,我们创建了一个**指向s1的引用**,但是并不拥有它。因为并不拥有这个值,当引用离开作用域后,其指向的值也不会被丢弃。
+通过 `&s1` 语法,我们创建了一个 **指向s1的引用**,但是并不拥有它。因为并不拥有这个值,当引用离开作用域后,其指向的值也不会被丢弃。
-同理,函数`calculate_length`使用`&`来表明参数`s`的类型是一个引用:
+同理,函数 `calculate_length` 使用 `&` 来表明参数 `s` 的类型是一个引用:
```rust
fn calculate_length(s: &String) -> usize { // s 是对 String 的引用
s.len()
@@ -113,11 +113,11 @@ fn change(some_string: &mut String) {
}
```
-首先,声明`s`是可变类型,其次创建一个可变的引用`&mut s`和接受可变引用的函数`some_string: &mut String`。
+首先,声明 `s` 是可变类型,其次创建一个可变的引用 `&mut s` 和接受可变引用的函数 `some_string: &mut String`。
##### 可变引用同时只能存在一个
-不过可变引用并不是随心所欲、想用就用的,它有一个很大的限制:同一作用域,特定数据只能有一个可变引用:
+不过可变引用并不是随心所欲、想用就用的,它有一个很大的限制: **同一作用域,特定数据只能有一个可变引用**:
```rust
let mut s = String::from("hello");
@@ -129,7 +129,7 @@ println!("{}, {}", r1, r2);
以上代码会报错:
```console
-error[E0499]: cannot borrow `s` as mutable more than once at a time 同一时间无法对`s`进行两次可变借用
+error[E0499]: cannot borrow `s` as mutable more than once at a time 同一时间无法对 `s` 进行两次可变借用
--> src/main.rs:5:14
|
4 | let r1 = &mut s;
@@ -141,16 +141,16 @@ error[E0499]: cannot borrow `s` as mutable more than once at a time 同一时间
| -- first borrow later used here 第一个借用在这里使用
```
-这段代码出错的原因在于,第一个可变借用`r1`必须要持续到最后一次使用的位置`println!`,在`r1`创建和最后一次使用之间,我们又尝试创建第二个可变引用`r2`。
+这段代码出错的原因在于,第一个可变借用 `r1` 必须要持续到最后一次使用的位置 `println!`,在 `r1` 创建和最后一次使用之间,我们又尝试创建第二个可变引用 `r2`。
-对于新手来说,这个特性绝对是一大拦路虎,也是新人们谈之色变的编译器`borrow checker`特性之一,不过各行各业都一样,限制往往是出于安全的考虑,Rust也一样。
+对于新手来说,这个特性绝对是一大拦路虎,也是新人们谈之色变的编译器 `borrow checker` 特性之一,不过各行各业都一样,限制往往是出于安全的考虑,Rust 也一样。
-这种限制的好处就是使Rust在编译期就避免数据竞争,数据竞争可由以下行为造成:
+这种限制的好处就是使 Rust 在编译期就避免数据竞争,数据竞争可由以下行为造成:
- 两个或更多的指针同时访问同一数据
- 至少有一个指针被用来写入数据
- 没有同步数据访问的机制
-数据竞争会导致未定义行为,这种行为很可能超出我们的预期,难以在运行时追踪,并且难以诊断和修复。而Rust避免了这种情况的发生,因为它甚至不会编译存在数据竞争的代码!
+数据竞争会导致未定义行为,这种行为很可能超出我们的预期,难以在运行时追踪,并且难以诊断和修复。而 Rust 避免了这种情况的发生,因为它甚至不会编译存在数据竞争的代码!
很多时候,大括号可以帮我们解决一些编译不通过的问题,通过手动限制变量的作用域:
```rust
@@ -179,7 +179,8 @@ println!("{}, {}, and {}", r1, r2, r3);
错误如下:
```console
-error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable 无法借用可变`s`因为它已经被借用了不可变
+error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immutable
+ // 无法借用可变 `s` 因为它已经被借用了不可变
--> src/main.rs:6:14
|
4 | let r1 = &s; // 没问题
@@ -194,9 +195,9 @@ error[E0502]: cannot borrow `s` as mutable because it is also borrowed as immuta
其实这个也很好理解,正在借用不可变引用的用户,肯定不希望他借用的东西,被另外一个人莫名其妙改变了。多个不可变借用被允许是因为没有人会去试图修改数据,每个人都只读这一份数据而不做修改,因此不用担心数据被污染。
-> 注意,引用的作用域s从创建开始,一直持续到它最后一次使用的地方,这个跟变量的作用域有所不同,变量的作用域从创建持续到某一个花括号`}`
+> 注意,引用的作用域 `s` 从创建开始,一直持续到它最后一次使用的地方,这个跟变量的作用域有所不同,变量的作用域从创建持续到某一个花括号 `}`
-Rust的编译器一直在优化,早期的时候,引用的作用域跟变量作用域是一致的,这对日常使用带来了很大的困扰,你必须非常小心的去安排可变、不可变变量的借用,免得无法通过编译,例如以下代码:
+Rust 的编译器一直在优化,早期的时候,引用的作用域跟变量作用域是一致的,这对日常使用带来了很大的困扰,你必须非常小心的去安排可变、不可变变量的借用,免得无法通过编译,例如以下代码:
```rust
fn main() {
let mut s = String::from("hello");
@@ -212,22 +213,22 @@ fn main() {
// 新编译器中,r3作用域在这里结束
```
-在老版本的编译器中(Rust 1.31前),将会报错,因为`r1`和`r2`的作用域在花括号`}`处结束,那么`r3`的借用就会触发**无法同时借用可变和不可变**的规则。
+在老版本的编译器中(Rust 1.31前),将会报错,因为 `r1` 和 `r2` 的作用域在花括号 `}` 处结束,那么 `r3` 的借用就会触发 **无法同时借用可变和不可变**的规则。
-但是在新的编译器中,该代码将顺利通过,因为**引用作用域的结束位置从花括号变成最后一次使用的位置**,因此`r1`借用和`r2`借用在`println!`后,就结束了,此时`r3`可以顺利借用到可变引用。
+但是在新的编译器中,该代码将顺利通过,因为 **引用作用域的结束位置从花括号变成最后一次使用的位置**,因此 `r1` 借用和 `r2` 借用在 `println!` 后,就结束了,此时 `r3` 可以顺利借用到可变引用。
#### NLL
-对于这种编译器优化行为,Rust专门起了一个名字 - Non-Lexical Lifetimes(NLL),专门用于找到某个引用在作用域(`}`)结束前就不再被使用的代码位置。
+对于这种编译器优化行为,Rust 专门起了一个名字 —— **Non-Lexical Lifetimes(NLL)**,专门用于找到某个引用在作用域(`}`)结束前就不再被使用的代码位置。
-虽然这种借用错误有的时候会让我们很郁闷,但是你只要想想这是Rust提前帮你发现了潜在的bug,其实就开心了,虽然减慢了开发速度,但是从长期来看,大幅减少了后续开发和运维成本.
+虽然这种借用错误有的时候会让我们很郁闷,但是你只要想想这是 Rust 提前帮你发现了潜在的 BUG,其实就开心了,虽然减慢了开发速度,但是从长期来看,大幅减少了后续开发和运维成本。
### 悬垂引用(Dangling References)
悬垂引用也叫做悬垂指针,指的是指针指向某个值后,这个值被释放掉了,而指针仍然存在,其指向的内存可能不存在任何值或已被其它变量重新使用。在 Rust 中编译器可以确保引用永远也不会变成悬垂状态:当你拥有一些数据的引用,编译器可以确保数据不会在其引用之前被释放,要想释放数据,必须先停止其引用的使用。
-让我们尝试创建一个悬垂引用,Rust会抛出一个编译时错误:
+让我们尝试创建一个悬垂引用,Rust 会抛出一个编译时错误:
```rust
fn main() {
@@ -258,7 +259,7 @@ help: consider using the `'static` lifetime
```
-错误信息引用了一个我们还未介绍的功能:生命周期(lifetimes)。[该章](../../advance/lifetime.md)会详细介绍生命周期。不过,即使你不理解生命周期,也可以通过错误信息知道这段代码错误的关键信息:
+错误信息引用了一个我们还未介绍的功能:[生命周期(lifetimes)](../../advance/lifetime.md)。不过,即使你不理解生命周期,也可以通过错误信息知道这段代码错误的关键信息:
```text
this function's return type contains a borrowed value, but there is no value for it to be borrowed from.
@@ -290,7 +291,7 @@ fn no_dangle() -> String {
}
```
-这样就没有任何错误了,最终`String`的**所有权被转移给外面的调用者**。
+这样就没有任何错误了,最终 `String` 的 **所有权被转移给外面的调用者**。
## 借用规则总结
diff --git a/book/contents/basic/ownership/index.md b/book/contents/basic/ownership/index.md
index 17bcdbc1..6971bd9d 100644
--- a/book/contents/basic/ownership/index.md
+++ b/book/contents/basic/ownership/index.md
@@ -1,7 +1,7 @@
# 所有权和借用
-Rust之所以能成为万众瞩目的语言,就是因为其内存安全性。在以往,内存安全几乎都是通过GC的方式实现,但是GC会引来性能、内存占用以及Stop the world等问题,在高性能场景和系统编程上是不可接受的,因此Rust采用了与(错)众(误)不(之)同(源)的方式:**所有权系统**。
+Rust 之所以能成为万众瞩目的语言,就是因为其内存安全性。在以往,内存安全几乎都是通过 GC 的方式实现,但是 GC 会引来性能、内存占用以及 Stop the world 等问题,在高性能场景和系统编程上是不可接受的,因此 Rust 采用了与(错)众(误)不(之)同(源)的方式:**所有权系统**。
-理解所有权和借用,对于Rust学习是至关重要的,因此我们把本章提到了非常靠前的位置,So,骚年们,准备好迎接狂风暴雨了嘛?
+理解**所有权**和**借用**,对于 Rust 学习是至关重要的,因此我们把本章提到了非常靠前的位置,So,骚年们,准备好迎接狂风暴雨了嘛?
-从现在开始,鉴于大家已经掌握了非常基本的语法,有些时候,在示例代码中,将省略`fn main() {}`的模版代码,只要将相应的示例放在`fn main() {}`中,即可运行。
+从现在开始,鉴于大家已经掌握了非常基本的语法,有些时候,在示例代码中,将省略 `fn main() {}` 的模版代码,只要将相应的示例放在 `fn main() {}` 中,即可运行。
diff --git a/book/contents/basic/ownership/ownership.md b/book/contents/basic/ownership/ownership.md
index 30e073d7..b1abecf1 100644
--- a/book/contents/basic/ownership/ownership.md
+++ b/book/contents/basic/ownership/ownership.md
@@ -5,9 +5,9 @@
- **手动管理内存的分配和释放**, 在程序中,通过函数调用的方式来申请和释放内存,典型代表:C++
- **通过所有权来管理内存**,编译器在编译时会根据一系列规则进行检查
-其中Rust选择了第三种,最妙的是,这种检查只发生在编译期,因此对于程序运行期,不会有任何性能上的损失。
+其中 Rust 选择了第三种,最妙的是,这种检查只发生在编译期,因此对于程序运行期,不会有任何性能上的损失。
-由于所有权是一个新概念,因此读者需要花费一些时间来掌握它,一旦掌握,海阔天空任你飞跃,在本章,我们将通过`字符串`来引导讲解所有权的相关知识。
+由于所有权是一个新概念,因此读者需要花费一些时间来掌握它,一旦掌握,海阔天空任你飞跃,在本章,我们将通过 `字符串` 来引导讲解所有权的相关知识。
## 一段不安全的代码
@@ -21,17 +21,17 @@ int* foo() {
} // 变量a和c的作用域结束
```
-这段代码虽然可以编译通过,但是其实非常糟糕,变量`a`和`c`都是局部变量,函数结束后将局部变量`a`的地址返回,但局部变量`a`存在栈中,在离开作用域后,`a`所申请的栈上内存都会被系统回收,从而造成了`悬空指针(Dangling Pointer)`的问题。这是一个非常典型的内存安全问题,虽然编译可以通过,但是运行的时候会出现错误, 很多编程语言都存在。
+这段代码虽然可以编译通过,但是其实非常糟糕,变量 `a` 和 `c` 都是局部变量,函数结束后将局部变量 `a` 的地址返回,但局部变量 `a` 存在栈中,在离开作用域后,`a` 所申请的栈上内存都会被系统回收,从而造成了 `悬空指针(Dangling Pointer)` 的问题。这是一个非常典型的内存安全问题,虽然编译可以通过,但是运行的时候会出现错误, 很多编程语言都存在。
-再来看变量`c`,`c`的值是常量字符串,存储于常量区,可能这个函数我们只调用了一次,也可能我们不再会使用这个字符串,但`xyz`只有当整个程序结束后系统才能回收这片内存。
+再来看变量 `c`,`c` 的值是常量字符串,存储于常量区,可能这个函数我们只调用了一次,也可能我们不再会使用这个字符串,但 `"xyz"` 只有当整个程序结束后系统才能回收这片内存。
-所以内存安全问题,一直都是程序员非常头疼的问题,好在, 在Rust中这些问题即将成为历史,因为Rust在编译的时候就可以帮助我们发现内存不安全的问题,那Rust如何做到这一点呢?
+所以内存安全问题,一直都是程序员非常头疼的问题,好在, 在 Rust 中这些问题即将成为历史,因为 Rust 在编译的时候就可以帮助我们发现内存不安全的问题,那 Rust 如何做到这一点呢?
在正式进入主题前,先来一个预热知识。
## 栈(Stack)与堆(Heap)
-栈和堆是编程语言最核心的数据结构,但是在很多语言中,你并不需要深入了解栈与堆。 但对于Rust这样的系统编程语言,值是位于栈上还是堆上非常重要, 因为这会影响程序的行为和性能。
+栈和堆是编程语言最核心的数据结构,但是在很多语言中,你并不需要深入了解栈与堆。 但对于 Rust 这样的系统编程语言,值是位于栈上还是堆上非常重要, 因为这会影响程序的行为和性能。
栈和堆的核心目标就是为程序在运行时提供可供使用的内存空间。
@@ -48,9 +48,9 @@ int* foo() {
与栈不同,对于大小未知或者可能变化的数据,我们需要将它存储在堆上。
-当向堆上放入数据时,需要请求一定大小的内存空间。操作系统在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的 **指针**, 该过程被称为 **在堆上分配内存**,有时简称为 “分配”(allocating)。
+当向堆上放入数据时,需要请求一定大小的内存空间。操作系统在堆的某处找到一块足够大的空位,把它标记为已使用,并返回一个表示该位置地址的 **指针**, 该过程被称为 **在堆上分配内存**,有时简称为 “分配”(allocating)。
-接着,该指针会被推入`栈`中,因为指针的大小是已知且固定的,在后续使用过程中,你将通过栈中的指针,来获取数据在堆上的实际内存位置,进而访问该数据。
+接着,该指针会被推入 **栈** 中,因为指针的大小是已知且固定的,在后续使用过程中,你将通过栈中的 **指针**,来获取数据在堆上的实际内存位置,进而访问该数据。
由上可知,堆是一种缺乏组织的数据结构。想象一下去餐馆就座吃饭: 进入餐馆,告知服务员有几个人,然后服务员找到一个够大的空桌子(堆上分配的内存空间)并领你们过去。如果有人来迟了,他们也可以通过桌号(栈上的指针)来找到你们坐在哪。
@@ -58,24 +58,24 @@ int* foo() {
写入方面:入栈比在堆上分配内存要快,因为入栈时操作系统无需分配新的空间,只需要将新数据放入栈顶即可。相比之下,在堆上分配内存则需要更多的工作,这是因为操作系统必须首先找到一块足够存放数据的内存空间,接着做一些记录为下一次分配做准备。
-读取方面:得益于CPU高速缓存,使得处理器可以减少对内存的访问,高速缓存和内存的访问速度差异在10倍以上!栈数据往往可以直接存储在CPU高速缓存中,而堆数据只能存储在内存中。访问堆上的数据比访问栈上的数据慢,因为必须先访问栈再通过栈上的指针来访问内存。
+读取方面:得益于 CPU 高速缓存,使得处理器可以减少对内存的访问,高速缓存和内存的访问速度差异在 10 倍以上!栈数据往往可以直接存储在 CPU 高速缓存中,而堆数据只能存储在内存中。访问堆上的数据比访问栈上的数据慢,因为必须先访问栈再通过栈上的指针来访问内存。
因此,处理器处理和分配在栈上数据会比在堆上的数据更加高效。
#### 所有权与堆栈
-当你的代码调用一个函数时,传递给函数的参数(包括可能指向堆上数据的指针和函数的局部变量)依次被压入栈中,当函数调用结束时,这些值将被从栈中按照相反的顺序依次移除。
+当你的代码调用一个函数时,传递给函数的参数(包括可能指向堆上数据的指针和函数的局部变量)依次被压入栈中,当函数调用结束时,这些值将被从栈中按照相反的顺序依次移除。
-因为堆上的数据缺乏组织,因此跟踪这些数据何时分配和释放是非常重要的,否则堆上的数据将产生内存泄漏 - 这些数据将永远无法被回收。这就是Rust所有权系统为我们提供的强大保障。
+因为堆上的数据缺乏组织,因此跟踪这些数据何时分配和释放是非常重要的,否则堆上的数据将产生内存泄漏 —— 这些数据将永远无法被回收。这就是 Rust 所有权系统为我们提供的强大保障。
-对于其他很多编程语言,你确实无需理解堆栈的原理,**但是在Rust中,明白堆栈的原理,对于我们理解所有权的工作原理会有很大的帮助**.
+对于其他很多编程语言,你确实无需理解堆栈的原理,但是 **在 Rust 中,明白堆栈的原理,对于我们理解所有权的工作原理会有很大的帮助**。
## 所有权原则
理解了堆栈,接下来看一下*关于所有权的规则*,首先请谨记以下规则:
-> 1. Rust中每一个值都`有且只有`一个所有者(变量)
+> 1. Rust 中每一个值都 `有且只有` 一个所有者(变量)
> 2. 当所有者(变量)离开作用域范围时,这个值将被丢弃(free)
@@ -87,7 +87,7 @@ int* foo() {
let s = "hello"
```
-变量`s`绑定到了一个字符串字面值,该字符串字面值是硬编码到程序代码中的。`s`变量从声明的点开始直到当前作用域的结束都是有效的:
+变量 `s` 绑定到了一个字符串字面值,该字符串字面值是硬编码到程序代码中的。`s` 变量从声明的点开始直到当前作用域的结束都是有效的:
```rust
{ // s 在这里无效,它尚未声明
let s = "hello"; // 从此处起,s 是有效的
@@ -96,25 +96,25 @@ let s = "hello"
} // 此作用域已结束,s不再有效
```
-简而言之,`s`从创建伊始就开始有效,然后有效期持续到它离开作用域为止,可以看出,就作用域来说,Rust语言跟其他编程语言没有区别。
+简而言之,`s` 从创建伊始就开始有效,然后有效期持续到它离开作用域为止,可以看出,就作用域来说,Rust 语言跟其他编程语言没有区别。
#### 简单介绍String类型
-之前提到过,本章会用String作为例子,因此这里会进行一下简单的介绍,具体的String学习请参见[String类型](../compound-type/string-slice.md)。
+之前提到过,本章会用 `String` 作为例子,因此这里会进行一下简单的介绍,具体的 `String` 学习请参见 [String类型](../compound-type/string-slice.md)。
-我们已经见过字符串字面值`let s ="hello"`,s是被硬编码进程序里的字符串值(类型为&str)。字符串字面值是很方便的,但是它并不适用于所有场景。原因有二:
+我们已经见过字符串字面值 `let s ="hello"`,`s` 是被硬编码进程序里的字符串值(类型为 `&str` )。字符串字面值是很方便的,但是它并不适用于所有场景。原因有二:
- **字符串字面值是不可变的**,因为被硬编码到程序代码中
- 并非所有字符串的值都能在编写代码时得知
-例如,字符串是需要程序运行时,通过用户动态输入然后存储在内存中的,这种情况,字符串字面值就完全无用武之地。 为此,Rust为我们提供动态字符串类型: `String`, 该类型被分配到堆上,因此可以动态伸缩,也就能存储在编译时大小未知的文本。
+例如,字符串是需要程序运行时,通过用户动态输入然后存储在内存中的,这种情况,字符串字面值就完全无用武之地。 为此,Rust 为我们提供动态字符串类型: `String`, 该类型被分配到堆上,因此可以动态伸缩,也就能存储在编译时大小未知的文本。
-可以使用下面的方法基于字符串字面量来创建`String`类型:
+可以使用下面的方法基于字符串字面量来创建 `String` 类型:
```rust
let s = String::from("hello");
```
-`::`是一种调用操作符,这里表示调用`String`中的`from`方法,因为`String`存储在堆上是动态的,你可以这样修改它:
+`::` 是一种调用操作符,这里表示调用 `String` 中的 `from` 方法,因为 `String` 存储在堆上是动态的,你可以这样修改它:
```rust
let mut s = String::from("hello");
@@ -123,7 +123,7 @@ s.push_str(", world!"); // push_str() 在字符串后追加字面值
println!("{}", s); // 将打印 `hello, world!`
```
-言归正传,了解`String`内容后,一起来看看关于所有权的交互。
+言归正传,了解 `String` 内容后,一起来看看关于所有权的交互。
## 变量绑定背后的数据交互
@@ -135,31 +135,31 @@ let x = 5;
let y = x;
```
-代码背后的逻辑很简单, 将 `5 `绑定到变量`x`;接着拷贝`x`的值赋给`y`,最终`x`和`y`都等于`5`,因为整数是Rust基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存。
+代码背后的逻辑很简单, 将 `5` 绑定到变量 `x`;接着拷贝 `x` 的值赋给 `y`,最终 `x` 和 `y` 都等于 `5`,因为整数是 Rust 基本数据类型,是固定大小的简单值,因此这两个值都是通过自动拷贝的方式来赋值的,都被存在栈中,完全无需在堆上分配内存。
-可能有同学会有疑问:这种拷贝不消耗性能吗?实际上,这种栈上的数据足够简单,而且拷贝非常非常快,只需要复制一个整数大小(i32,4个字节)的内存即可,因此在这种情况下,拷贝的速度远比在堆上创建内存来得快的多。实际上,上一章我们讲到的Rust基本类型都是通过自动拷贝的方式来赋值的,就像上面代码一样。
+可能有同学会有疑问:这种拷贝不消耗性能吗?实际上,这种栈上的数据足够简单,而且拷贝非常非常快,只需要复制一个整数大小(`i32`,4 个字节)的内存即可,因此在这种情况下,拷贝的速度远比在堆上创建内存来得快的多。实际上,上一章我们讲到的 Rust 基本类型都是通过自动拷贝的方式来赋值的,就像上面代码一样。
然后再来看一段代码:
```rust
let s1 = String::from("hello");
let s2 = s1;
```
-此时,可能某个大聪明(善意昵称)已经想到了:嗯,把`s1`的内容拷贝一份赋值给`s2`,实际上,并不是这样。之前也提到了,对于基本类型(存储在栈上),Rust会自动拷贝,但是`String`不是基本类型,而是存储在堆上的,因此不能自动拷贝。
+此时,可能某个大聪明(善意昵称)已经想到了:嗯,把 `s1` 的内容拷贝一份赋值给 `s2`,实际上,并不是这样。之前也提到了,对于基本类型(存储在栈上),Rust 会自动拷贝,但是 `String` 不是基本类型,而且是存储在堆上的,因此不能自动拷贝。
-实际上,`String`类型是一个复杂类型,由存储在栈中的堆指针、字符串长度、字符串容量共同组成,其中堆指针是最重要的,它指向了真实存储字符串内容的堆内存,至于长度和容量,如果你有Go语言的经验,这里就很好理解:容量是堆内存分配空间的大小,长度是目前已经使用的大小.
+实际上, `String` 类型是一个复杂类型,由 **存储在栈中的堆指针**、 **字符串长度**、 **字符串容量**共同组成,其中 **堆指针**是最重要的,它指向了真实存储字符串内容的堆内存,至于长度和容量,如果你有 Go 语言的经验,这里就很好理解:容量是堆内存分配空间的大小,长度是目前已经使用的大小。
-总之`String`类型指向了一个堆上的空间,这里存储着它的真实数据, 下面对上面代码中的`let s2 = s1`分成两种情况讨论:
-1. 拷贝`String`和存储在堆上的字节数组
-如果该语句是拷贝所有数据(深拷贝),那么无论是`String`本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响
+总之 `String` 类型指向了一个堆上的空间,这里存储着它的真实数据, 下面对上面代码中的 `let s2 = s1` 分成两种情况讨论:
+1. 拷贝 `String` 和存储在堆上的字节数组
+如果该语句是拷贝所有数据(深拷贝),那么无论是 `String` 本身还是底层的堆上数据,都会被全部拷贝,这对于性能而言会造成非常大的影响
-2. 只拷贝`String`本身
-这样的拷贝非常快,因为在64位机器上就拷贝了`8字节的指针`、`8字节的长度`、`8字节的容量`,总计24字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是,一个值只允许有一个所有者,而现在这个值(堆上的真实字符串数据)有了两个所有者:`s1`和`s2`。
+2. 只拷贝 `String` 本身
+这样的拷贝非常快,因为在 64 位机器上就拷贝了 `8字节的指针`、`8字节的长度`、`8字节的容量`,总计 24 字节,但是带来了新的问题,还记得我们之前提到的所有权规则吧?其中有一条就是: **一个值只允许有一个所有者**,而现在这个值(堆上的真实字符串数据)有了两个所有者:`s1` 和 `s2`。
好吧,就假定一个值可以拥有两个所有者,会发生什么呢?
-当变量离开作用域后,Rust会自动调用 `drop` 函数并清理变量的堆内存。不过由于两个`String`变量指向了同一位置。这就有了一个问题:当 `s1` 和 `s2` 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 二次释放(double free)的错误,也是之前提到过的内存安全性 bug 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。
+当变量离开作用域后,Rust 会自动调用 `drop` 函数并清理变量的堆内存。不过由于两个 `String` 变量指向了同一位置。这就有了一个问题:当 `s1` 和 `s2` 离开作用域,它们都会尝试释放相同的内存。这是一个叫做 **二次释放(double free)**的错误,也是之前提到过的内存安全性 BUG 之一。两次释放(相同)内存会导致内存污染,它可能会导致潜在的安全漏洞。
-因此,Rust这样解决问题:**当`s1`赋予`s2`后,Rust认为`s1`不再有效,因此也无需在`s1`离开作用域后`drop`任何东西,这就是把所有权从`s1`转移给了`s2`,`s1`在被赋予`s2`后就马上失效了**.
+因此,Rust 这样解决问题: **当 `s1` 赋予 `s2` 后,Rust 认为 `s1` 不再有效,因此也无需在 `s1` 离开作用域后 `drop` 任何东西,这就是把所有权从 `s1` 转移给了 `s2`,`s1` 在被赋予 `s2` 后就马上失效了**。
再来看看,在所有权转移后再来使用旧的所有者,会发生什么:
```rust
@@ -169,7 +169,7 @@ let s2 = s1;
println!("{}, world!", s1);
```
-由于Rust禁止你使用无效的引用,你会看到以下的错误
+由于 Rust 禁止你使用无效的引用,你会看到以下的错误:
```console
error[E0382]: use of moved value: `s1`
--> src/main.rs:5:28
@@ -185,21 +185,21 @@ error[E0382]: use of moved value: `s1`
```
现在再回头看看之前的规则,相信大家已经有了更深刻的理解:
-> 1. Rust中每一个值都`有且只有`一个所有者(变量)
-> 2. 当所有者(变量)离开作用域范围时,这个值将被丢弃
+> 1. Rust 中每一个值都 `有且只有` 一个所有者(变量)
+> 2. 当所有者(变量)离开作用域范围时,这个值将被丢弃(free)
-如果你在其他语言中听说过术语 浅拷贝(shallow copy)和 深拷贝(deep copy),那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量`s1`无效了,因此这个操作被称为 移动(move),而不是浅拷贝。上面的例子可以解读为 `s1` 被 移动 到了 `s2` 中。那么具体发生了什么,用一张图简单说明:
+如果你在其他语言中听说过术语 **浅拷贝(shallow copy)**和 **深拷贝(deep copy)**,那么拷贝指针、长度和容量而不拷贝数据听起来就像浅拷贝,但是又因为 Rust 同时使第一个变量 `s1` 无效了,因此这个操作被称为 **移动(move)**,而不是浅拷贝。上面的例子可以解读为 `s1` 被 **移动**到了 `s2` 中。那么具体发生了什么,用一张图简单说明:
-这样就解决了我们之前的问题,`s1`不再指向任何数据,只有`s2`是有效的,当`s2`离开作用域,它就会释放内存。 相信此刻,你应该明白了,为什么Rust称呼`let a = b`为**变量绑定**了吧?
+这样就解决了我们之前的问题,`s1` 不再指向任何数据,只有 `s2` 是有效的,当 `s2` 离开作用域,它就会释放内存。 相信此刻,你应该明白了,为什么 Rust 称呼 `let a = b` 为 **变量绑定**了吧?
#### 克隆(深拷贝)
-首先,**Rust 永远也不会自动创建数据的 “深拷贝”**。因此,任何**自动**的复制都不是深拷贝,可以被认为对运行时性能影响较小。
+首先,**Rust 永远也不会自动创建数据的 “深拷贝”**。因此,任何 **自动**的复制都不是深拷贝,可以被认为对运行时性能影响较小。
-如果我们**确实**需要深度复制`String`中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做`clone`的方法。
+如果我们 **确实**需要深度复制 `String` 中堆上的数据,而不仅仅是栈上的数据,可以使用一个叫做 `clone` 的方法。
```rust
let s1 = String::from("hello");
@@ -208,9 +208,9 @@ let s2 = s1.clone();
println!("s1 = {}, s2 = {}", s1, s2);
```
-这段代码能够正常运行,因此说明`s2`确实完整的复制了`s1`的数据。
+这段代码能够正常运行,因此说明 `s2` 确实完整的复制了 `s1` 的数据。
-如果代码性能无关紧要,例如初始化程序时,或者在某段时间只会执行一次时,你可以使用`clone`来简化编程。但是对于执行较为频繁的代码(热点路径),使用`clone`会极大的降低程序性能,需要小心使用!
+如果代码性能无关紧要,例如初始化程序时,或者在某段时间只会执行一次时,你可以使用 `clone` 来简化编程。但是对于执行较为频繁的代码(热点路径),使用 `clone` 会极大的降低程序性能,需要小心使用!
#### 拷贝(浅拷贝)
@@ -224,13 +224,13 @@ let y = x;
println!("x = {}, y = {}", x, y);
```
-但这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 `clone`,不过依然实现了类似深拷贝的效果 - 没有报所有权的错误。
+但这段代码似乎与我们刚刚学到的内容相矛盾:没有调用 `clone`,不过依然实现了类似深拷贝的效果 —— 没有报所有权的错误。
-原因是像整型这样的基本类型在编译时是已知大小的,会被存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 `y` 后使 `x` 无效(`x`、 `y`都仍然有效)。换句话说,这里没有深浅拷贝的区别,因此这里调用 `clone` 并不会与通常的浅拷贝有什么不同,我们可以不用管它(可以理解成在栈上做了深拷贝)。
+原因是像整型这样的基本类型在编译时是已知大小的,会被存储在栈上,所以拷贝其实际的值是快速的。这意味着没有理由在创建变量 `y` 后使 `x` 无效(`x`、`y` 都仍然有效)。换句话说,这里没有深浅拷贝的区别,因此这里调用 `clone` 并不会与通常的浅拷贝有什么不同,我们可以不用管它(可以理解成在栈上做了深拷贝)。
-Rust 有一个叫做 `Copy`的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 `Copy`特征,一个旧的变量在被赋值给其他变量后仍然可用。
+Rust 有一个叫做 `Copy` 的特征,可以用在类似整型这样在栈中存储的类型。如果一个类型拥有 `Copy` 特征,一个旧的变量在被赋值给其他变量后仍然可用。
-那么什么类型是可`Copy` 的呢?可以查看给定类型的文档来确认,不过作为一个通用的规则:**任何基本类型的组合可以是 `Copy` 的,不需要分配内存或某种形式资源的类型是 `Copy` 的**。如下是一些 `Copy` 的类型:
+那么什么类型是可 `Copy` 的呢?可以查看给定类型的文档来确认,不过作为一个通用的规则: **任何基本类型的组合可以是 `Copy` 的,不需要分配内存或某种形式资源的类型是 `Copy` 的**。如下是一些 `Copy` 的类型:
* 所有整数类型,比如 `u32`。
* 布尔类型,`bool`,它的值是 `true` 和 `false`。
@@ -239,7 +239,7 @@ Rust 有一个叫做 `Copy`的特征,可以用在类似整型这样在栈中
* 元组,当且仅当其包含的类型也都是 `Copy` 的时候。比如,`(i32, i32)` 是 `Copy` 的,但 `(i32, String)` 就不是。
## 函数传值与返回
-将值传递给函数,一样会发生`移动`或者`复制`,就跟`let`语句一样,下面的代码展示了所有权、作用域的规则:
+将值传递给函数,一样会发生 `移动` 或者 `复制`,就跟 `let` 语句一样,下面的代码展示了所有权、作用域的规则:
```rust
fn main() {
let s = String::from("hello"); // s 进入作用域
@@ -264,7 +264,7 @@ fn makes_copy(some_integer: i32) { // some_integer 进入作用域
} // 这里,some_integer 移出作用域。不会有特殊操作
```
-你可以尝试在`takes_ownership`之后,再使用`s`,看看如何报错?例如添加一行`println!("在move进函数后继续使用s: {}",s);`。
+你可以尝试在 `takes_ownership` 之后,再使用 `s`,看看如何报错?例如添加一行 `println!("在move进函数后继续使用s: {}",s);`。
同样的,函数返回值也有所有权,例如:
@@ -297,5 +297,5 @@ fn takes_and_gives_back(a_string: String) -> String { // a_string 进入作用
```
-所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: **总是把一个值传来传去来使用它**。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust提供了新功能解决这个问题。
+所有权很强大,避免了内存的不安全性,但是也带来了一个新麻烦: **总是把一个值传来传去来使用它**。 传入一个函数,很可能还要从该函数传出去,结果就是语言表达变得非常啰嗦,幸运的是,Rust 提供了新功能解决这个问题。
diff --git a/book/contents/basic/variable.md b/book/contents/basic/variable.md
index e2cd9091..70894753 100644
--- a/book/contents/basic/variable.md
+++ b/book/contents/basic/variable.md
@@ -12,9 +12,9 @@
## 变量命名
-在命名方面,和其它语言没有区别,不过当给变量命名时,需要遵循[Rust命名规范](../practice/style-guide/naming.md)。
+在命名方面,和其它语言没有区别,不过当给变量命名时,需要遵循 [Rust 命名规范](../practice/style-guide/naming.md)。
-> Rust 语言有一些**关键字**(*keywords*),和其他语言一样,这些关键字都是被保留给 Rust 语言使用的,因此,它们不能被用作变量或函数的名称。在[附录 A](../appendix/keywords) 中可找到关键字列表。
+> Rust 语言有一些**关键字**(*keywords*),和其他语言一样,这些关键字都是被保留给 Rust 语言使用的,因此,它们不能被用作变量或函数的名称。在 [附录 A](../appendix/keywords) 中可找到关键字列表。
## 变量绑定
diff --git a/book/contents/first-try/cargo.md b/book/contents/first-try/cargo.md
index 97bbd0b0..764e4480 100644
--- a/book/contents/first-try/cargo.md
+++ b/book/contents/first-try/cargo.md
@@ -1,6 +1,6 @@
## 认识Cargo
-但凡经历过 C/C++、Go 语言 1.10 版本之前的用户都知道,一个好的包管理工具有多么的重要!!我那个时候是如此的渴望类似 `nodejs` 的 `npm `包管理工具,但是却求而不得,包管理工具最重要的意义就是**任何用户拿到你的代码,都能运行起来**",而不会因为各种包版本依赖焦头烂额,Go 语言在 1.10 版本之前,所有的包都是在 `github.com` 下存放,导致了所有的项目都公用一套依赖代码,在本地项目复杂后,这简直是一种灾难。
+但凡经历过 C/C++、Go 语言 1.10 版本之前的用户都知道,一个好的包管理工具有多么的重要!!我那个时候是如此的渴望类似 `nodejs` 的 `npm `包管理工具,但是却求而不得,包管理工具最重要的意义就是**任何用户拿到你的代码,都能运行起来**,而不会因为各种包版本依赖焦头烂额,Go 语言在 1.10 版本之前,所有的包都是在 `github.com` 下存放,导致了所有的项目都公用一套依赖代码,在本地项目复杂后,这简直是一种灾难。
说多了都是泪,笔者目前还有一个早期 Go 的项目(15年写的),用到了 `iris` (一个坑爹HTTP服务),结果现在运行不起来了,因为找不到 `iris` 当时的那个版本!!