# 堆(Heap) ```rust // Heap data structure // Takes a closure as a comparator to allow for min-heap, max-heap, and works with custom key functions use std::cmp::Ord; use std::default::Default; pub struct Heap where T: Default, { count: usize, items: Vec, comparator: fn(&T, &T) -> bool, } impl Heap where T: Default, { pub fn new(comparator: fn(&T, &T) -> bool) -> Self { Self { count: 0, // Add a default in the first spot to offset indexes // for the parent/child math to work out. // Vecs have to have all the same type so using Default // is a way to add an unused item. items: vec![T::default()], comparator, } } pub fn len(&self) -> usize { self.count } pub fn is_empty(&self) -> bool { self.len() == 0 } pub fn add(&mut self, value: T) { self.count += 1; self.items.push(value); // Heapify Up let mut idx = self.count; while self.parent_idx(idx) > 0 { let pdx = self.parent_idx(idx); if (self.comparator)(&self.items[idx], &self.items[pdx]) { self.items.swap(idx, pdx); } idx = pdx; } } fn parent_idx(&self, idx: usize) -> usize { idx / 2 } fn children_present(&self, idx: usize) -> bool { self.left_child_idx(idx) <= self.count } fn left_child_idx(&self, idx: usize) -> usize { idx * 2 } fn right_child_idx(&self, idx: usize) -> usize { self.left_child_idx(idx) + 1 } fn smallest_child_idx(&self, idx: usize) -> usize { if self.right_child_idx(idx) > self.count { self.left_child_idx(idx) } else { let ldx = self.left_child_idx(idx); let rdx = self.right_child_idx(idx); if (self.comparator)(&self.items[ldx], &self.items[rdx]) { ldx } else { rdx } } } } impl Heap where T: Default + Ord, { /// Create a new MinHeap pub fn new_min() -> Self { Self::new(|a, b| a < b) } /// Create a new MaxHeap pub fn new_max() -> Self { Self::new(|a, b| a > b) } } impl Iterator for Heap where T: Default, { type Item = T; fn next(&mut self) -> Option { if self.count == 0 { return None; } // This feels like a function built for heap impl :) // Removes an item at an index and fills in with the last item // of the Vec let next = Some(self.items.swap_remove(1)); self.count -= 1; if self.count > 0 { // Heapify Down let mut idx = 1; while self.children_present(idx) { let cdx = self.smallest_child_idx(idx); if !(self.comparator)(&self.items[idx], &self.items[cdx]) { self.items.swap(idx, cdx); } idx = cdx; } } next } } pub struct MinHeap; impl MinHeap { #[allow(clippy::new_ret_no_self)] pub fn new() -> Heap where T: Default + Ord, { Heap::new(|a, b| a < b) } } pub struct MaxHeap; impl MaxHeap { #[allow(clippy::new_ret_no_self)] pub fn new() -> Heap where T: Default + Ord, { Heap::new(|a, b| a > b) } } #[cfg(test)] mod tests { use super::*; #[test] fn test_empty_heap() { let mut heap = MaxHeap::new::(); assert_eq!(heap.next(), None); } #[test] fn test_min_heap() { let mut heap = MinHeap::new(); heap.add(4); heap.add(2); heap.add(9); heap.add(11); assert_eq!(heap.len(), 4); assert_eq!(heap.next(), Some(2)); assert_eq!(heap.next(), Some(4)); assert_eq!(heap.next(), Some(9)); heap.add(1); assert_eq!(heap.next(), Some(1)); } #[test] fn test_max_heap() { let mut heap = MaxHeap::new(); heap.add(4); heap.add(2); heap.add(9); heap.add(11); assert_eq!(heap.len(), 4); assert_eq!(heap.next(), Some(11)); assert_eq!(heap.next(), Some(9)); assert_eq!(heap.next(), Some(4)); heap.add(1); assert_eq!(heap.next(), Some(2)); } struct Point(/* x */ i32, /* y */ i32); impl Default for Point { fn default() -> Self { Self(0, 0) } } #[test] fn test_key_heap() { let mut heap: Heap = Heap::new(|a, b| a.0 < b.0); heap.add(Point(1, 5)); heap.add(Point(3, 10)); heap.add(Point(-2, 4)); assert_eq!(heap.len(), 3); assert_eq!(heap.next().unwrap().0, -2); assert_eq!(heap.next().unwrap().0, 1); heap.add(Point(50, 34)); assert_eq!(heap.next().unwrap().0, 3); } } ```