# 查找第K小的元素 ```rust use crate::sorting::partition; use std::cmp::{Ordering, PartialOrd}; /// Returns k-th smallest element of an array, i.e. its order statistics. /// Time complexity is O(n^2) in the worst case, but only O(n) on average. /// It mutates the input, and therefore does not require additional space. pub fn kth_smallest(input: &mut [T], k: usize) -> Option where T: PartialOrd + Copy, { if input.is_empty() { return None; } let kth = _kth_smallest(input, k, 0, input.len() - 1); Some(kth) } fn _kth_smallest(input: &mut [T], k: usize, lo: usize, hi: usize) -> T where T: PartialOrd + Copy, { if lo == hi { return input[lo]; } let pivot = partition(input, lo as isize, hi as isize) as usize; let i = pivot - lo + 1; match k.cmp(&i) { Ordering::Equal => input[pivot], Ordering::Less => _kth_smallest(input, k, lo, pivot - 1), Ordering::Greater => _kth_smallest(input, k - i, pivot + 1, hi), } } #[cfg(test)] mod tests { use super::*; #[test] fn empty() { let mut zero: [u8; 0] = []; let first = kth_smallest(&mut zero, 1); assert_eq!(None, first); } #[test] fn one_element() { let mut one = [1]; let first = kth_smallest(&mut one, 1); assert_eq!(1, first.unwrap()); } #[test] fn many_elements() { // 0 1 3 4 5 7 8 9 9 10 12 13 16 17 let mut many = [9, 17, 3, 16, 13, 10, 1, 5, 7, 12, 4, 8, 9, 0]; let first = kth_smallest(&mut many, 1); let third = kth_smallest(&mut many, 3); let sixth = kth_smallest(&mut many, 6); let fourteenth = kth_smallest(&mut many, 14); assert_eq!(0, first.unwrap()); assert_eq!(3, third.unwrap()); assert_eq!(7, sixth.unwrap()); assert_eq!(17, fourteenth.unwrap()); } } ```