You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

474 lines
17 KiB

//! Minimal Redis client implementation
//!
//! Provides an async connect and methods for issuing the supported commands.
use crate::cmd::{Get, Publish, Set, Subscribe, Unsubscribe};
use crate::{Connection, Frame};
use async_stream::try_stream;
use bytes::Bytes;
use std::io::{Error, ErrorKind};
use std::time::Duration;
use tokio::net::{TcpStream, ToSocketAddrs};
use tokio_stream::Stream;
use tracing::{debug, instrument};
/// Established connection with a Redis server.
///
/// Backed by a single `TcpStream`, `Client` provides basic network client
/// functionality (no pooling, retrying, ...). Connections are established using
/// the [`connect`](fn@connect) function.
///
/// Requests are issued using the various methods of `Client`.
pub struct Client {
/// The TCP connection decorated with the redis protocol encoder / decoder
/// implemented using a buffered `TcpStream`.
///
/// When `Listener` receives an inbound connection, the `TcpStream` is
/// passed to `Connection::new`, which initializes the associated buffers.
/// `Connection` allows the handler to operate at the "frame" level and keep
/// the byte level protocol parsing details encapsulated in `Connection`.
connection: Connection,
}
/// A client that has entered pub/sub mode.
///
/// Once clients subscribe to a channel, they may only perform pub/sub related
/// commands. The `Client` type is transitioned to a `Subscriber` type in order
/// to prevent non-pub/sub methods from being called.
pub struct Subscriber {
/// The subscribed client.
client: Client,
/// The set of channels to which the `Subscriber` is currently subscribed.
subscribed_channels: Vec<String>,
}
/// A message received on a subscribed channel.
#[derive(Debug, Clone)]
pub struct Message {
pub channel: String,
pub content: Bytes,
}
/// Establish a connection with the Redis server located at `addr`.
///
/// `addr` may be any type that can be asynchronously converted to a
/// `SocketAddr`. This includes `SocketAddr` and strings. The `ToSocketAddrs`
/// trait is the Tokio version and not the `std` version.
///
/// # Examples
///
/// ```no_run
/// use mini_redis::client;
///
/// #[tokio::main]
/// async fn main() {
/// let client = match client::connect("localhost:6379").await {
/// Ok(client) => client,
/// Err(_) => panic!("failed to establish connection"),
/// };
/// # drop(client);
/// }
/// ```
///
pub async fn connect<T: ToSocketAddrs>(addr: T) -> crate::Result<Client> {
// The `addr` argument is passed directly to `TcpStream::connect`. This
// performs any asynchronous DNS lookup and attempts to establish the TCP
// connection. An error at either step returns an error, which is then
// bubbled up to the caller of `mini_redis` connect.
let socket = TcpStream::connect(addr).await?;
// Initialize the connection state. This allocates read/write buffers to
// perform redis protocol frame parsing.
let connection = Connection::new(socket);
Ok(Client { connection })
}
impl Client {
/// Get the value of key.
///
/// If the key does not exist the special value `None` is returned.
///
/// # Examples
///
/// Demonstrates basic usage.
///
/// ```no_run
/// use mini_redis::client;
///
/// #[tokio::main]
/// async fn main() {
/// let mut client = client::connect("localhost:6379").await.unwrap();
///
/// let val = client.get("foo").await.unwrap();
/// println!("Got = {:?}", val);
/// }
/// ```
#[instrument(skip(self))]
pub async fn get(&mut self, key: &str) -> crate::Result<Option<Bytes>> {
// Create a `Get` command for the `key` and convert it to a frame.
let frame = Get::new(key).into_frame();
debug!(request = ?frame);
// Write the frame to the socket. This writes the full frame to the
// socket, waiting if necessary.
self.connection.write_frame(&frame).await?;
// Wait for the response from the server
//
// Both `Simple` and `Bulk` frames are accepted. `Null` represents the
// key not being present and `None` is returned.
match self.read_response().await? {
Frame::Simple(value) => Ok(Some(value.into())),
Frame::Bulk(value) => Ok(Some(value)),
Frame::Null => Ok(None),
frame => Err(frame.to_error()),
}
}
/// Set `key` to hold the given `value`.
///
/// The `value` is associated with `key` until it is overwritten by the next
/// call to `set` or it is removed.
///
/// If key already holds a value, it is overwritten. Any previous time to
/// live associated with the key is discarded on successful SET operation.
///
/// # Examples
///
/// Demonstrates basic usage.
///
/// ```no_run
/// use mini_redis::client;
///
/// #[tokio::main]
/// async fn main() {
/// let mut client = client::connect("localhost:6379").await.unwrap();
///
/// client.set("foo", "bar".into()).await.unwrap();
///
/// // Getting the value immediately works
/// let val = client.get("foo").await.unwrap().unwrap();
/// assert_eq!(val, "bar");
/// }
/// ```
#[instrument(skip(self))]
pub async fn set(&mut self, key: &str, value: Bytes) -> crate::Result<()> {
// Create a `Set` command and pass it to `set_cmd`. A separate method is
// used to set a value with an expiration. The common parts of both
// functions are implemented by `set_cmd`.
self.set_cmd(Set::new(key, value, None)).await
}
/// Set `key` to hold the given `value`. The value expires after `expiration`
///
/// The `value` is associated with `key` until one of the following:
/// - it expires.
/// - it is overwritten by the next call to `set`.
/// - it is removed.
///
/// If key already holds a value, it is overwritten. Any previous time to
/// live associated with the key is discarded on a successful SET operation.
///
/// # Examples
///
/// Demonstrates basic usage. This example is not **guaranteed** to always
/// work as it relies on time based logic and assumes the client and server
/// stay relatively synchronized in time. The real world tends to not be so
/// favorable.
///
/// ```no_run
/// use mini_redis::client;
/// use tokio::time;
/// use std::time::Duration;
///
/// #[tokio::main]
/// async fn main() {
/// let ttl = Duration::from_millis(500);
/// let mut client = client::connect("localhost:6379").await.unwrap();
///
/// client.set_expires("foo", "bar".into(), ttl).await.unwrap();
///
/// // Getting the value immediately works
/// let val = client.get("foo").await.unwrap().unwrap();
/// assert_eq!(val, "bar");
///
/// // Wait for the TTL to expire
/// time::sleep(ttl).await;
///
/// let val = client.get("foo").await.unwrap();
/// assert!(val.is_some());
/// }
/// ```
#[instrument(skip(self))]
pub async fn set_expires(
&mut self,
key: &str,
value: Bytes,
expiration: Duration,
) -> crate::Result<()> {
// Create a `Set` command and pass it to `set_cmd`. A separate method is
// used to set a value with an expiration. The common parts of both
// functions are implemented by `set_cmd`.
self.set_cmd(Set::new(key, value, Some(expiration))).await
}
/// The core `SET` logic, used by both `set` and `set_expires.
async fn set_cmd(&mut self, cmd: Set) -> crate::Result<()> {
// Convert the `Set` command into a frame
let frame = cmd.into_frame();
debug!(request = ?frame);
// Write the frame to the socket. This writes the full frame to the
// socket, waiting if necessary.
self.connection.write_frame(&frame).await?;
// Wait for the response from the server. On success, the server
// responds simply with `OK`. Any other response indicates an error.
match self.read_response().await? {
Frame::Simple(response) if response == "OK" => Ok(()),
frame => Err(frame.to_error()),
}
}
/// Posts `message` to the given `channel`.
///
/// Returns the number of subscribers currently listening on the channel.
/// There is no guarantee that these subscribers receive the message as they
/// may disconnect at any time.
///
/// # Examples
///
/// Demonstrates basic usage.
///
/// ```no_run
/// use mini_redis::client;
///
/// #[tokio::main]
/// async fn main() {
/// let mut client = client::connect("localhost:6379").await.unwrap();
///
/// let val = client.publish("foo", "bar".into()).await.unwrap();
/// println!("Got = {:?}", val);
/// }
/// ```
#[instrument(skip(self))]
pub async fn publish(&mut self, channel: &str, message: Bytes) -> crate::Result<u64> {
// Convert the `Publish` command into a frame
let frame = Publish::new(channel, message).into_frame();
debug!(request = ?frame);
// Write the frame to the socket
self.connection.write_frame(&frame).await?;
// Read the response
match self.read_response().await? {
Frame::Integer(response) => Ok(response),
frame => Err(frame.to_error()),
}
}
/// Subscribes the client to the specified channels.
///
/// Once a client issues a subscribe command, it may no longer issue any
/// non-pub/sub commands. The function consumes `self` and returns a `Subscriber`.
///
/// The `Subscriber` value is used to receive messages as well as manage the
/// list of channels the client is subscribed to.
#[instrument(skip(self))]
pub async fn subscribe(mut self, channels: Vec<String>) -> crate::Result<Subscriber> {
// Issue the subscribe command to the server and wait for confirmation.
// The client will then have been transitioned into the "subscriber"
// state and may only issue pub/sub commands from that point on.
self.subscribe_cmd(&channels).await?;
// Return the `Subscriber` type
Ok(Subscriber {
client: self,
subscribed_channels: channels,
})
}
/// The core `SUBSCRIBE` logic, used by misc subscribe fns
async fn subscribe_cmd(&mut self, channels: &[String]) -> crate::Result<()> {
// Convert the `Subscribe` command into a frame
let frame = Subscribe::new(&channels).into_frame();
debug!(request = ?frame);
// Write the frame to the socket
self.connection.write_frame(&frame).await?;
// For each channel being subscribed to, the server responds with a
// message confirming subscription to that channel.
for channel in channels {
// Read the response
let response = self.read_response().await?;
// Verify it is confirmation of subscription.
match response {
Frame::Array(ref frame) => match frame.as_slice() {
// The server responds with an array frame in the form of:
//
// ```
// [ "subscribe", channel, num-subscribed ]
// ```
//
// where channel is the name of the channel and
// num-subscribed is the number of channels that the client
// is currently subscribed to.
[subscribe, schannel, ..]
if *subscribe == "subscribe" && *schannel == channel => {}
_ => return Err(response.to_error()),
},
frame => return Err(frame.to_error()),
};
}
Ok(())
}
/// Reads a response frame from the socket.
///
/// If an `Error` frame is received, it is converted to `Err`.
async fn read_response(&mut self) -> crate::Result<Frame> {
let response = self.connection.read_frame().await?;
debug!(?response);
match response {
// Error frames are converted to `Err`
Some(Frame::Error(msg)) => Err(msg.into()),
Some(frame) => Ok(frame),
None => {
// Receiving `None` here indicates the server has closed the
// connection without sending a frame. This is unexpected and is
// represented as a "connection reset by peer" error.
let err = Error::new(ErrorKind::ConnectionReset, "connection reset by server");
Err(err.into())
}
}
}
}
impl Subscriber {
/// Returns the set of channels currently subscribed to.
pub fn get_subscribed(&self) -> &[String] {
&self.subscribed_channels
}
/// Receive the next message published on a subscribed channel, waiting if
/// necessary.
///
/// `None` indicates the subscription has been terminated.
pub async fn next_message(&mut self) -> crate::Result<Option<Message>> {
match self.client.connection.read_frame().await? {
Some(mframe) => {
debug!(?mframe);
match mframe {
Frame::Array(ref frame) => match frame.as_slice() {
[message, channel, content] if *message == "message" => Ok(Some(Message {
channel: channel.to_string(),
content: Bytes::from(content.to_string()),
})),
_ => Err(mframe.to_error()),
},
frame => Err(frame.to_error()),
}
}
None => Ok(None),
}
}
/// Convert the subscriber into a `Stream` yielding new messages published
/// on subscribed channels.
///
/// `Subscriber` does not implement stream itself as doing so with safe code
/// is non trivial. The usage of async/await would require a manual Stream
/// implementation to use `unsafe` code. Instead, a conversion function is
/// provided and the returned stream is implemented with the help of the
/// `async-stream` crate.
pub fn into_stream(mut self) -> impl Stream<Item = crate::Result<Message>> {
// Uses the `try_stream` macro from the `async-stream` crate. Generators
// are not stable in Rust. The crate uses a macro to simulate generators
// on top of async/await. There are limitations, so read the
// documentation there.
try_stream! {
while let Some(message) = self.next_message().await? {
yield message;
}
}
}
/// Subscribe to a list of new channels
#[instrument(skip(self))]
pub async fn subscribe(&mut self, channels: &[String]) -> crate::Result<()> {
// Issue the subscribe command
self.client.subscribe_cmd(channels).await?;
// Update the set of subscribed channels.
self.subscribed_channels
.extend(channels.iter().map(Clone::clone));
Ok(())
}
/// Unsubscribe to a list of new channels
#[instrument(skip(self))]
pub async fn unsubscribe(&mut self, channels: &[String]) -> crate::Result<()> {
let frame = Unsubscribe::new(&channels).into_frame();
debug!(request = ?frame);
// Write the frame to the socket
self.client.connection.write_frame(&frame).await?;
// if the input channel list is empty, server acknowledges as unsubscribing
// from all subscribed channels, so we assert that the unsubscribe list received
// matches the client subscribed one
let num = if channels.is_empty() {
self.subscribed_channels.len()
} else {
channels.len()
};
// Read the response
for _ in 0..num {
let response = self.client.read_response().await?;
match response {
Frame::Array(ref frame) => match frame.as_slice() {
[unsubscribe, channel, ..] if *unsubscribe == "unsubscribe" => {
let len = self.subscribed_channels.len();
if len == 0 {
// There must be at least one channel
return Err(response.to_error());
}
// unsubscribed channel should exist in the subscribed list at this point
self.subscribed_channels.retain(|c| *channel != &c[..]);
// Only a single channel should be removed from the
// list of subscribed channels.
if self.subscribed_channels.len() != len - 1 {
return Err(response.to_error());
}
}
_ => return Err(response.to_error()),
},
frame => return Err(frame.to_error()),
};
}
Ok(())
}
}