|
|
|
|
## 使用 `Sync` 和 `Send` trait 的可扩展并发
|
|
|
|
|
|
|
|
|
|
> [ch16-04-extensible-concurrency-sync-and-send.md](https://github.com/rust-lang/book/blob/master/src/ch16-04-extensible-concurrency-sync-and-send.md)
|
|
|
|
|
> <br>
|
|
|
|
|
> commit 1fedfc4b96c2017f64ecfcf41a0a07e2e815f24f
|
|
|
|
|
|
|
|
|
|
Rust 的并发模型中一个有趣的方面是:语言本身对并发知之 **甚少**。我们之前讨论的几乎所有内容,都属于标准库,而不是语言本身的内容。由于不需要语言提供并发相关的基础设施,并发方案不受标准库或语言所限:我们可以编写自己的或使用别人编写的并发功能。
|
|
|
|
|
|
|
|
|
|
然而有两个并发概念是内嵌于语言中的:`std::marker` 中的 `Sync` 和 `Send` trait。
|
|
|
|
|
|
|
|
|
|
### 通过 `Send` 允许在线程间转移所有权
|
|
|
|
|
|
|
|
|
|
`Send` 标记 trait 表明类型的所有权可以在线程间传递。几乎所有的 Rust 类型都是`Send` 的,不过有一些例外,包括 `Rc<T>`:这是不能 `Send` 的,因为如果克隆了 `Rc<T>` 的值并尝试将克隆的所有权转移到另一个线程,这两个线程都可能同时更新引用计数。为此,`Rc<T>` 被实现为用于单线程场景,这时不需要为拥有线程安全的引用计数而付出性能代价。
|
|
|
|
|
|
|
|
|
|
因此,Rust 类型系统和 trait bound 确保永远也不会意外的将不安全的 `Rc<T>` 在线程间发送。当尝试在示例 16-14 中这么做的时候,会得到错误 `the trait Send is not implemented for Rc<Mutex<i32>>`。而使用标记为 `Send` 的 `Arc<T>` 时,就没有问题了。
|
|
|
|
|
|
|
|
|
|
任何完全由 `Send` 的类型组成的类型也会自动被标记为 `Send`。几乎所有基本类型都是 `Send` 的,除了第十九章将会讨论的裸指针(raw pointer)。
|
|
|
|
|
|
|
|
|
|
### `Sync` 允许多线程访问
|
|
|
|
|
|
|
|
|
|
`Sync` 标记 trait 表明一个实现了 `Sync` 的类型可以安全的在多个线程中拥有其值的引用。换一种方式来说,对于任意类型 `T`,如果 `&T`(`T` 的引用)是 `Send` 的话 `T` 就是 `Sync` 的,这意味着其引用就可以安全的发送到另一个线程。类似于 `Send` 的情况,基本类型是 `Sync` 的,完全由 `Sync` 的类型组成的类型也是 `Sync` 的。
|
|
|
|
|
|
|
|
|
|
智能指针 `Rc<T>` 也不是 `Sync` 的,出于其不是 `Send` 相同的原因。`RefCell<T>`(第十五章讨论过)和 `Cell<T>` 系列类型不是 `Sync` 的。`RefCell<T>` 在运行时所进行的借用检查也不是线程安全的。`Mutex<T>` 是 `Sync` 的,正如 “在线程间共享 `Mutex<T>`” 部分所讲的它可以被用来在多线程中共享访问。
|
|
|
|
|
|
|
|
|
|
### 手动实现 `Send` 和 `Sync` 是不安全的
|
|
|
|
|
|
|
|
|
|
通常并不需要手动实现 `Send` 和 `Sync` trait,因为由 `Send` 和 `Sync` 的类型组成的类型,自动就是 `Send` 和 `Sync` 的。因为他们是标记 trait,甚至都不需要实现任何方法。他们只是用来加强并发相关的不可变性的。
|
|
|
|
|
|
|
|
|
|
手动实现这些标记 trait 涉及到编写不安全的 Rust 代码,第十九章将会讲述具体的方法;当前重要的是,在创建新的由不是 `Send` 和 `Sync` 的部分构成的并发类型时需要多加小心,以确保维持其安全保证。[The Nomicon] 中有更多关于这些保证以及如何维持他们的信息。
|
|
|
|
|
|
|
|
|
|
[The Nomicon]: https://doc.rust-lang.org/stable/nomicon/
|
|
|
|
|
|
|
|
|
|
## 总结
|
|
|
|
|
|
|
|
|
|
这不会是本书最后一个出现并发的章节:第二十章的项目会在更现实的场景中使用这些概念,而不像本章中讨论的这些小例子。
|
|
|
|
|
|
|
|
|
|
正如之前提到的,因为 Rust 本身很少有处理并发的部分内容,有很多的并发方案都由 crate 实现。他们比标准库要发展的更快;请在网上搜索当前最新的用于多线程场景的 crate。
|
|
|
|
|
|
|
|
|
|
Rust 提供了用于消息传递的通道,和像 `Mutex<T>` 和 `Arc<T>` 这样可以安全的用于并发上下文的智能指针。类型系统和借用检查器会确保这些场景中的代码,不会出现数据竞争和无效的引用。一旦代码可以编译了,我们就可以坚信这些代码可以正确的运行于多线程环境,而不会出现其他语言中经常出现的那些难以追踪的 bug。并发编程不再是什么可怕的概念:无所畏惧地并发吧!
|
|
|
|
|
|
|
|
|
|
接下来,让我们讨论一下当 Rust 程序变得更大时,有哪些符合语言习惯的问题建模方法和结构化解决方案,以及 Rust 的风格是如何与面向对象编程(Object Oriented Programming)中那些你所熟悉的概念相联系的。
|