You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
trpl-zh-cn/src/ch13-03-improving-our-io-pr...

176 lines
8.2 KiB

8 years ago
## 改进 I/O 项目
> [ch13-03-improving-our-io-project.md](https://github.com/rust-lang/book/blob/main/src/ch13-03-improving-our-io-project.md)
8 years ago
> <br>
5 years ago
> commit 6555fb6c805fbfe7d0961980991f8bca6918928f
8 years ago
7 years ago
有了这些关于迭代器的新知识,我们可以使用迭代器来改进第十二章中 I/O 项目的实现来使得代码更简洁明了。让我们看看迭代器如何能够改进 `Config::new` 函数和 `search` 函数的实现。
8 years ago
7 years ago
### 使用迭代器并去掉 `clone`
8 years ago
6 years ago
在示例 12-6 中,我们增加了一些代码获取一个 `String` slice 并创建一个 `Config` 结构体的实例,他们索引 slice 中的值并克隆这些值以便 `Config` 结构体可以拥有这些值。在示例 13-24 中重现了第十二章结尾示例 12-23 中 `Config::new` 函数的实现:
7 years ago
<span class="filename">文件名: src/lib.rs</span>
8 years ago
```rust,ignore
impl Config {
7 years ago
pub fn new(args: &[String]) -> Result<Config, &'static str> {
8 years ago
if args.len() < 3 {
return Err("not enough arguments");
}
let query = args[1].clone();
8 years ago
let filename = args[2].clone();
7 years ago
let case_sensitive = env::var("CASE_INSENSITIVE").is_err();
Ok(Config { query, filename, case_sensitive })
8 years ago
}
}
```
<span class="caption">示例 13-24重现第十二章结尾的 `Config::new` 函数</span>
7 years ago
那时我们说过不必担心低效的 `clone` 调用了,因为将来可以对他们进行改进。好吧,就是现在!
7 years ago
起初这里需要 `clone` 的原因是参数 `args` 中有一个 `String` 元素的 slice`new` 函数并不拥有 `args`。为了能够返回 `Config` 实例的所有权,我们需要克隆 `Config` 中字段 `query``filename` 的值,这样 `Config` 实例就能拥有这些值。
8 years ago
在学习了迭代器之后,我们可以将 `new` 函数改为获取一个有所有权的迭代器作为参数而不是借用 slice。我们将使用迭代器功能之前检查 slice 长度和索引特定位置的代码。这会明确 `Config::new` 的工作因为迭代器会负责访问这些值。
8 years ago
7 years ago
一旦 `Config::new` 获取了迭代器的所有权并不再使用借用的索引操作,就可以将迭代器中的 `String` 值移动到 `Config` 中,而不是调用 `clone` 分配新的空间。
#### 直接使用 `env::args` 返回的迭代器
7 years ago
打开 I/O 项目的 *src/main.rs* 文件,它看起来应该像这样:
<span class="filename">文件名: src/main.rs</span>
8 years ago
```rust,ignore
fn main() {
7 years ago
let args: Vec<String> = env::args().collect();
let config = Config::new(&args).unwrap_or_else(|err| {
eprintln!("Problem parsing arguments: {}", err);
process::exit(1);
});
7 years ago
// --snip--
7 years ago
}
8 years ago
```
修改第十二章结尾示例 12-24 中的 `main` 函数的开头为示例 13-25 中的代码。在更新 `Config::new` 之前这些代码还不能编译:
7 years ago
<span class="filename">文件名: src/main.rs</span>
```rust,ignore
fn main() {
let config = Config::new(env::args()).unwrap_or_else(|err| {
eprintln!("Problem parsing arguments: {}", err);
process::exit(1);
});
7 years ago
// --snip--
7 years ago
}
```
<span class="caption">示例 13-25`env::args` 的返回值传递给 `Config::new`</span>
7 years ago
`env::args` 函数返回一个迭代器!不同于将迭代器的值收集到一个 vector 中接着传递一个 slice 给 `Config::new`,现在我们直接将 `env::args` 返回的迭代器的所有权传递给 `Config::new`
8 years ago
7 years ago
接下来需要更新 `Config::new` 的定义。在 I/O 项目的 *src/lib.rs* 中,将 `Config::new` 的签名改为如示例 13-26 所示。这仍然不能编译因为我们还需更新函数体:
7 years ago
<span class="filename">文件名: src/lib.rs</span>
8 years ago
```rust,ignore
impl Config {
pub fn new(mut args: std::env::Args) -> Result<Config, &'static str> {
// --snip--
```
<span class="caption">示例 13-26以迭代器作为参数更新 `Config::new` 的签名
`env::args` 函数的标准库文档显示,它返回的迭代器的类型为 `std::env::Args`。我们已经更新了 `Config :: new` 函数的签名,因此参数 `args` 的类型为 `std::env::Args` 而不是 `&[String]`。因为我们拥有 `args` 的所有权,并且将通过对其进行迭代来改变 `args` ,所以我们可以将 `mut` 关键字添加到 `args` 参数的规范中以使其可变。
#### 使用 `Iterator` trait 代替索引
接下来,我们将修改 `Config::new` 的内容。标准库文档还提到 `std::env::Args` 实现了 `Iterator` trait因此我们知道可以对其调用 `next` 方法!示例 13-27 更新了示例 12-23 中的代码,以使用 `next` 方法:
<span class="filename">文件名: src/lib.rs</span>
8 years ago
```rust
6 years ago
# fn main() {}
7 years ago
# use std::env;
#
8 years ago
# struct Config {
# query: String,
8 years ago
# filename: String,
7 years ago
# case_sensitive: bool,
8 years ago
# }
#
impl Config {
7 years ago
pub fn new(mut args: std::env::Args) -> Result<Config, &'static str> {
7 years ago
args.next();
8 years ago
let query = match args.next() {
8 years ago
Some(arg) => arg,
None => return Err("Didn't get a query string"),
8 years ago
};
let filename = match args.next() {
Some(arg) => arg,
None => return Err("Didn't get a file name"),
};
7 years ago
let case_sensitive = env::var("CASE_INSENSITIVE").is_err();
7 years ago
Ok(Config { query, filename, case_sensitive })
8 years ago
}
}
```
6 years ago
<span class="caption">示例 13-27修改 `Config::new` 的函数体来使用迭代器方法</span>
8 years ago
7 years ago
请记住 `env::args` 返回值的第一个值是程序的名称。我们希望忽略它并获取下一个值,所以首先调用 `next` 并不对返回值做任何操作。之后对希望放入 `Config` 中字段 `query` 调用 `next`。如果 `next` 返回 `Some`,使用 `match` 来提取其值。如果它返回 `None`,则意味着没有提供足够的参数并通过 `Err` 值提早返回。对 `filename` 值进行同样的操作。
8 years ago
### 使用迭代器适配器来使代码更简明
I/O 项目中其他可以利用迭代器的地方是 `search` 函数,示例 13-28 中重现了第十二章结尾示例 12-19 中此函数的定义:
7 years ago
<span class="filename">文件名: src/lib.rs</span>
```rust,ignore
pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
let mut results = Vec::new();
for line in contents.lines() {
if line.contains(query) {
results.push(line);
}
}
results
}
```
6 years ago
<span class="caption">示例 13-28示例 12-19 中 `search` 函数的定义</span>
7 years ago
6 years ago
可以通过使用迭代器适配器方法来编写更简明的代码。这也避免了一个可变的中间 `results` vector 的使用。函数式编程风格倾向于最小化可变状态的数量来使代码更简洁。去掉可变状态可能会使得将来进行并行搜索的增强变得更容易,因为我们不必管理 `results` vector 的并发访问。示例 13-29 展示了该变化:
7 years ago
7 years ago
<span class="filename">文件名: src/lib.rs</span>
7 years ago
7 years ago
```rust,ignore
pub fn search<'a>(query: &str, contents: &'a str) -> Vec<&'a str> {
8 years ago
contents.lines()
.filter(|line| line.contains(query))
8 years ago
.collect()
}
```
<span class="caption">示例 13-29`search` 函数实现中使用迭代器适配器</span>
8 years ago
回忆 `search` 函数的目的是返回所有 `contents` 中包含 `query` 的行。类似于示例 13-19 中的 `filter` 例子,可以使用 `filter` 适配器只保留 `line.contains(query)` 返回 `true` 的那些行。接着使用 `collect` 将匹配行收集到另一个 vector 中。这样就容易多了!尝试对 `search_case_insensitive` 函数做出同样的使用迭代器方法的修改吧。
8 years ago
接下来的逻辑问题就是在代码中应该选择哪种风格:是使用示例 13-28 中的原始实现还是使用示例 13-29 中使用迭代器的版本?大部分 Rust 程序员倾向于使用迭代器风格。开始这有点难以理解,不过一旦你对不同迭代器的工作方式有了感觉之后,迭代器可能会更容易理解。相比摆弄不同的循环并创建新 vector迭代器代码则更关注循环的目的。这抽象掉那些老生常谈的代码这样就更容易看清代码所特有的概念比如迭代器中每个元素必须面对的过滤条件。
8 years ago
7 years ago
不过这两种实现真的完全等同吗?直觉上的假设是更底层的循环会更快一些。让我们聊聊性能吧。