|
|
|
## 高级生命周期
|
|
|
|
|
|
|
|
回到第10章, 我们学习了如何用生命周期注解引用参数来帮助 Rust 理解不同的引用所关联的生命周期. 我们看到大多数时候, Rust 都会让你忽略生命周期, 但是每个引用都有一个生命周期. 还有三个关于生命周期的高级特性我们以前没有介绍, 它们是: *生命周期子类型(lifetime subtyping)*, *生命周期绑定(lifetime
|
|
|
|
bounds)*, 和 *trait 对象生命周期*.
|
|
|
|
|
|
|
|
### 生命周期子类型
|
|
|
|
|
|
|
|
想象一下我们想写一个解释器. 为此, 我们需要一个持有即将被解析的字符串的引用的结构, 我们把这个结构叫做`Context`. 我们将写一个能够解析这个字符串并返回成功或失败的解析器. 该解析器需要借用这个上下文(解析器中的`context`属性)来完成解析. 实现这个功能的代码如例 19-12, 但是这个代码不能被编译因为我们没有使用生命周期注解:
|
|
|
|
|
|
|
|
```rust,ignore
|
|
|
|
struct Context(&str);
|
|
|
|
|
|
|
|
struct Parser {
|
|
|
|
context: &Context,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl Parser {
|
|
|
|
fn parse(&self) -> Result<(), &str> {
|
|
|
|
Err(&self.context.0[1..])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">例19-12: 定义持有一个字符串切片的`Context`结构, 一个持有某个`Context`实例引用的`Parser`结构, 和一个总是返回一个错误的`parse`方法, 这个被返回的错误引用了该字符串切片</span>
|
|
|
|
|
|
|
|
为了简单起见, 我们的`parse`函数返回一个`Result<(), &str>`. 也就是说, 我们在成功时不做任何事情, 在失败时我们返回部分没有解析正确的字符串切片. 一个真正的实现将会有更多的错误信息, 而且实际上在解析成功时会返回当时创建的内容, 但是我们将实现的这部分省略了因为它们与本例的生命周期无关. 我们也定义`parse`总在第一个字节后产生一个错误. 请注意如果第一个字节不在有效的字符边界内这可能会出现错误; 再说一下, 为了把注意力放在生命周期上, 我们简化了这个例子.
|
|
|
|
|
|
|
|
那么我们如何设置`Context`中的字符串切片的生命周期参数和`Parser`中的`Context`引用呢? 最直接的办法就是使用同样的生命周期, 如例19-13所示:
|
|
|
|
|
|
|
|
```rust
|
|
|
|
struct Context<'a>(&'a str);
|
|
|
|
|
|
|
|
struct Parser<'a> {
|
|
|
|
context: &'a Context<'a>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a> Parser<'a> {
|
|
|
|
fn parse(&self) -> Result<(), &str> {
|
|
|
|
Err(&self.context.0[1..])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">例19-13: 限定`Context`和`Parser`中的所有引用具有同样的生命周期参数</span>
|
|
|
|
|
|
|
|
这样就能够编译了. 然后, 在例19-14中, 让我们写一个以`Context`实例为参数的函数, 该函数用一个`Parser`来解析那个`Context`实例并把`parse`方法的结果直接返回. 但是这个代码不能正常工作:
|
|
|
|
|
|
|
|
```rust,ignore
|
|
|
|
fn parse_context(context: Context) -> Result<(), &str> {
|
|
|
|
Parser { context: &context }.parse()
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">例19-14: 尝试添加有一个`parse_context`函数, 该函数有一个`Context`参数, 在函数中使用了`Parser`</span>
|
|
|
|
|
|
|
|
当我们试图用新添加的`parse_context`函数来编译代码时我们会得到两个相当详细的错误:
|
|
|
|
|
|
|
|
```text
|
|
|
|
error: borrowed value does not live long enough
|
|
|
|
--> <anon>:16:5
|
|
|
|
|
|
|
|
|
16 | Parser { context: &context }.parse()
|
|
|
|
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^ does not live long enough
|
|
|
|
17 | }
|
|
|
|
| - temporary value only lives until here
|
|
|
|
|
|
|
|
|
note: borrowed value must be valid for the anonymous lifetime #1 defined on the
|
|
|
|
body at 15:55...
|
|
|
|
--> <anon>:15:56
|
|
|
|
|
|
|
|
|
15 | fn parse_context(context: Context) -> Result<(), &str> {
|
|
|
|
| ________________________________________________________^
|
|
|
|
16 | | Parser { context: &context }.parse()
|
|
|
|
17 | | }
|
|
|
|
| |_^
|
|
|
|
|
|
|
|
error: `context` does not live long enough
|
|
|
|
--> <anon>:16:24
|
|
|
|
|
|
|
|
|
16 | Parser { context: &context }.parse()
|
|
|
|
| ^^^^^^^ does not live long enough
|
|
|
|
17 | }
|
|
|
|
| - borrowed value only lives until here
|
|
|
|
|
|
|
|
|
note: borrowed value must be valid for the anonymous lifetime #1 defined on the
|
|
|
|
body at 15:55...
|
|
|
|
--> <anon>:15:56
|
|
|
|
|
|
|
|
|
15 | fn parse_context(context: Context) -> Result<(), &str> {
|
|
|
|
| ________________________________________________________^
|
|
|
|
16 | | Parser { context: &context }.parse()
|
|
|
|
17 | | }
|
|
|
|
| |_^
|
|
|
|
```
|
|
|
|
|
|
|
|
这些错误表明不管是我们创建的`Parser`实例还是作用于从`Parser`被创建的行开始到`parse_context`函数结束的`context`参数, 都需要拥有整个函数的生命周期.
|
|
|
|
|
|
|
|
换句话说, `Parser`和`context`存活的时间要比整个函数更长, 为了让代码中的所有引用都有效它们也应该在函数被调用前后都有效. 不管是我们正创建的`Parser`还是在函数结束时就会结束作用域的`context`参数都是如此(因为`parse_context`函数会获得`context`的所有权).
|
|
|
|
|
|
|
|
让我们再看一下例19-13中的定义, 特别是`parse`方法的声明:
|
|
|
|
|
|
|
|
```rust,ignore
|
|
|
|
fn parse(&self) -> Result<(), &str> {
|
|
|
|
```
|
|
|
|
|
|
|
|
还记得生命周期的省略规则吗? 如果我们注解引用的生命周期, 那么可以这样写:
|
|
|
|
|
|
|
|
```rust,ignore
|
|
|
|
fn parse<'a>(&'a self) -> Result<(), &'a str> {
|
|
|
|
```
|
|
|
|
|
|
|
|
也就是说, `parse`函数返回值的错误中的部分是因为它有一个生命周期被绑定到了`Parser`实例的生命周期上面(也就是`parse`方法中的`&self`). 这就是了, 因为被返回的字符串切片引用了`Parser`持有的`Context`实例中的字符串切片, 并且我们已经在`Parser`结构的定义中指定了`Parser`中的`Context`的引用的生命周期和`Context`持有的字符串切片的生命周期是一样的.
|
|
|
|
|
|
|
|
问题是`parse_context`函数要返回`parse`方法的返回值, 这样`parse_context`的返回值的生命周期也就被绑定到了`Parser`的生命周期上了. 但是在`parse_context`函数中创建的`Parser`实例在函数结束后就不会存活了(它是临时的), 并且`context`在函数结束后也会越过作用域(`parse_context`拥有它的所有权).
|
|
|
|
|
|
|
|
我们不能返回只在函数作用域内才能存活的值的引用. Rust就认为我们在做这个事情, 因为我们把所有的生命周期参数都注解成一样的了. 这就告诉 Rust `Context`持有的字符串切片的生命周期和`Parser`持有的`Context`引用的生命周期是一样的.
|
|
|
|
|
|
|
|
The `parse_context` function can't see that within the `parse` function, the
|
|
|
|
string slice returned will outlive both `Context` and `Parser`, and that the
|
|
|
|
reference `parse_context` returns refers to the string slice, not to `Context`
|
|
|
|
or `Parser`.
|
|
|
|
|
|
|
|
By knowing what the implementation of `parse` does, we know that the only
|
|
|
|
reason that the return value of `parse` is tied to the `Parser` is because it's
|
|
|
|
referencing the `Parser`'s `Context`, which is referencing the string slice, so
|
|
|
|
it's really the lifetime of the string slice that `parse_context` needs to care
|
|
|
|
about. We need a way to tell Rust that the string slice in `Context` and the
|
|
|
|
reference to the `Context` in `Parser` have different lifetimes and that the
|
|
|
|
return value of `parse_context` is tied to the lifetime of the string slice in
|
|
|
|
`Context`.
|
|
|
|
|
|
|
|
We could try only giving `Parser` and `Context` different lifetime parameters
|
|
|
|
as shown in Listing 19-15. We've chosen the lifetime parameter names `'s` and
|
|
|
|
`'c` here to be clearer about which lifetime goes with the string slice in
|
|
|
|
`Context` and which goes with the reference to `Context` in `Parser`. Note that
|
|
|
|
this won't completely fix the problem, but it's a start and we'll look at why
|
|
|
|
this isn't sufficient when we try to compile.
|
|
|
|
|
|
|
|
```rust,ignore
|
|
|
|
struct Context<'s>(&'s str);
|
|
|
|
|
|
|
|
struct Parser<'c, 's> {
|
|
|
|
context: &'c Context<'s>,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'c, 's> Parser<'c, 's> {
|
|
|
|
fn parse(&self) -> Result<(), &'s str> {
|
|
|
|
Err(&self.context.0[1..])
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
fn parse_context(context: Context) -> Result<(), &str> {
|
|
|
|
Parser { context: &context }.parse()
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">Listing 19-15: Specifying different lifetime parameters
|
|
|
|
for the references to the string slice and to `Context`</span>
|
|
|
|
|
|
|
|
We've annotated the lifetimes of the references in all the same places that we
|
|
|
|
annotated them in Listing 19-13, but used different parameters depending on
|
|
|
|
whether the reference goes with the string slice or with `Context`. We've also
|
|
|
|
added an annotation to the string slice part of the return value of `parse` to
|
|
|
|
indicate that it goes with the lifetime of the string slice in `Context`.
|
|
|
|
|
|
|
|
Here's the error we get now:
|
|
|
|
|
|
|
|
```text
|
|
|
|
error[E0491]: in type `&'c Context<'s>`, reference has a longer lifetime than the data it references
|
|
|
|
--> src/main.rs:4:5
|
|
|
|
|
|
|
|
|
4 | context: &'c Context<'s>,
|
|
|
|
| ^^^^^^^^^^^^^^^^^^^^^^^^
|
|
|
|
|
|
|
|
|
note: the pointer is valid for the lifetime 'c as defined on the struct at 3:0
|
|
|
|
--> src/main.rs:3:1
|
|
|
|
|
|
|
|
|
3 | / struct Parser<'c, 's> {
|
|
|
|
4 | | context: &'c Context<'s>,
|
|
|
|
5 | | }
|
|
|
|
| |_^
|
|
|
|
note: but the referenced data is only valid for the lifetime 's as defined on the struct at 3:0
|
|
|
|
--> src/main.rs:3:1
|
|
|
|
|
|
|
|
|
3 | / struct Parser<'c, 's> {
|
|
|
|
4 | | context: &'c Context<'s>,
|
|
|
|
5 | | }
|
|
|
|
| |_^
|
|
|
|
```
|
|
|
|
|
|
|
|
Rust doesn't know of any relationship between `'c` and `'s`. In order to be
|
|
|
|
valid, the referenced data in `Context` with lifetime `'s` needs to be
|
|
|
|
constrained to guarantee that it lives longer than the reference to `Context`
|
|
|
|
that has lifetime `'c`. If `'s` is not longer than `'c`, then the reference to
|
|
|
|
`Context` might not be valid.
|
|
|
|
|
|
|
|
Which gets us to the point of this section: Rust has a feature called *lifetime
|
|
|
|
subtyping*, which is a way to specify that one lifetime parameter lives at
|
|
|
|
least as long as another one. In the angle brackets where we declare lifetime
|
|
|
|
parameters, we can declare a lifetime `'a` as usual, and declare a lifetime
|
|
|
|
`'b` that lives at least as long as `'a` by declaring `'b` with the syntax `'b:
|
|
|
|
'a`.
|
|
|
|
|
|
|
|
In our definition of `Parser`, in order to say that `'s` (the lifetime of the
|
|
|
|
string slice) is guaranteed to live at least as long as `'c` (the lifetime of
|
|
|
|
the reference to `Context`), we change the lifetime declarations to look like
|
|
|
|
this:
|
|
|
|
|
|
|
|
```rust
|
|
|
|
# struct Context<'a>(&'a str);
|
|
|
|
#
|
|
|
|
struct Parser<'c, 's: 'c> {
|
|
|
|
context: &'c Context<'s>,
|
|
|
|
}
|
|
|
|
```
|
|
|
|
|
|
|
|
Now, the reference to `Context` in the `Parser` and the reference to the string
|
|
|
|
slice in the `Context` have different lifetimes, and we've ensured that the
|
|
|
|
lifetime of the string slice is longer than the reference to the `Context`.
|
|
|
|
|
|
|
|
That was a very long-winded example, but as we mentioned at the start of this
|
|
|
|
chapter, these features are pretty niche. You won't often need this syntax, but
|
|
|
|
it can come up in situations like this one, where you need to refer to
|
|
|
|
something you have a reference to.
|
|
|
|
|
|
|
|
### Lifetime Bounds
|
|
|
|
|
|
|
|
In Chapter 10, we discussed how to use trait bounds on generic types. We can
|
|
|
|
also add lifetime parameters as constraints on generic types. For example,
|
|
|
|
let's say we wanted to make a wrapper over references. Remember `RefCell<T>`
|
|
|
|
from Chapter 15? This is how the `borrow` and `borrow_mut` methods work; they
|
|
|
|
return wrappers over references in order to keep track of the borrowing rules
|
|
|
|
at runtime. The struct definition, without lifetime parameters for now, would
|
|
|
|
look like Listing 19-16:
|
|
|
|
|
|
|
|
```rust,ignore
|
|
|
|
struct Ref<T>(&T);
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">Listing 19-16: Defining a struct to wrap a reference to a
|
|
|
|
generic type; without lifetime parameters to start</span>
|
|
|
|
|
|
|
|
However, using no lifetime bounds at all gives an error because Rust doesn't
|
|
|
|
know how long the generic type `T` will live:
|
|
|
|
|
|
|
|
```text
|
|
|
|
error[E0309]: the parameter type `T` may not live long enough
|
|
|
|
--> <anon>:2:19
|
|
|
|
|
|
|
|
|
2 | struct Ref<'a, T>(&'a T);
|
|
|
|
| ^^^^^^
|
|
|
|
|
|
|
|
|
= help: consider adding an explicit lifetime bound `T: 'a`...
|
|
|
|
note: ...so that the reference type `&'a T` does not outlive the data it points at
|
|
|
|
--> <anon>:2:19
|
|
|
|
|
|
|
|
|
2 | struct Ref<'a, T>(&'a T);
|
|
|
|
| ^^^^^^
|
|
|
|
```
|
|
|
|
|
|
|
|
This is the same error that we'd get if we filled in `T` with a concrete type,
|
|
|
|
like `struct Ref(&i32)`; all references in struct definitions need a lifetime
|
|
|
|
parameter. However, because we have a generic type parameter, we can't add a
|
|
|
|
lifetime parameter in the same way. Defining `Ref` as `struct Ref<'a>(&'a T)`
|
|
|
|
will result in an error because Rust can't determine that `T` lives long
|
|
|
|
enough. Since `T` can be any type, `T` could itself be a reference or it could
|
|
|
|
be a type that holds one or more references, each of which have their own
|
|
|
|
lifetimes.
|
|
|
|
|
|
|
|
Rust helpfully gave us good advice on how to specify the lifetime parameter in
|
|
|
|
this case:
|
|
|
|
|
|
|
|
```text
|
|
|
|
consider adding an explicit lifetime bound `T: 'a` so that the reference type
|
|
|
|
`&'a T` does not outlive the data it points to.
|
|
|
|
```
|
|
|
|
|
|
|
|
The code in Listing 19-17 works because `T: 'a` syntax specifies that `T` can
|
|
|
|
be any type, but if it contains any references, `T` must live as long as `'a`:
|
|
|
|
|
|
|
|
```rust
|
|
|
|
struct Ref<'a, T: 'a>(&'a T);
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">Listing 19-17: Adding lifetime bounds on `T` to specify
|
|
|
|
that any references in `T` live at least as long as `'a`</span>
|
|
|
|
|
|
|
|
We could choose to solve this in a different way as shown in Listing 19-18 by
|
|
|
|
bounding `T` on `'static`. This means if `T` contains any references, they must
|
|
|
|
have the `'static` lifetime:
|
|
|
|
|
|
|
|
```rust
|
|
|
|
struct StaticRef<T: 'static>(&'static T);
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">Listing 19-18: Adding a `'static` lifetime bound to `T`
|
|
|
|
to constrain `T` to types that have only `'static` references or no
|
|
|
|
references</span>
|
|
|
|
|
|
|
|
Types with no references count as `T: 'static`. Because `'static` means the
|
|
|
|
reference must live as long as the entire program, a type that contains no
|
|
|
|
references meets the criteria of all references living as long as the entire
|
|
|
|
program (since there are no references). Think of it this way: if the borrow
|
|
|
|
checker is concerned about references living long enough, then there's no real
|
|
|
|
distinction between a type that has no references and a type that has
|
|
|
|
references that live forever; both of them are the same for the purpose of
|
|
|
|
determining whether or not a reference has a shorter lifetime than what it
|
|
|
|
refers to.
|
|
|
|
|
|
|
|
### Trait Object Lifetimes
|
|
|
|
|
|
|
|
In Chapter 17, we learned about trait objects that consist of putting a trait
|
|
|
|
behind a reference in order to use dynamic dispatch. However, we didn't discuss
|
|
|
|
what happens if the type implementing the trait used in the trait object has a
|
|
|
|
lifetime. Consider Listing 19-19, where we have a trait `Foo` and a struct
|
|
|
|
`Bar` that holds a reference (and thus has a lifetime parameter) that
|
|
|
|
implements trait `Foo`, and we want to use an instance of `Bar` as the trait
|
|
|
|
object `Box<Foo>`:
|
|
|
|
|
|
|
|
```rust
|
|
|
|
trait Foo { }
|
|
|
|
|
|
|
|
struct Bar<'a> {
|
|
|
|
x: &'a i32,
|
|
|
|
}
|
|
|
|
|
|
|
|
impl<'a> Foo for Bar<'a> { }
|
|
|
|
|
|
|
|
let num = 5;
|
|
|
|
|
|
|
|
let obj = Box::new(Bar { x: &num }) as Box<Foo>;
|
|
|
|
```
|
|
|
|
|
|
|
|
<span class="caption">Listing 19-19: Using a type that has a lifetime parameter
|
|
|
|
with a trait object</span>
|
|
|
|
|
|
|
|
This code compiles without any errors, even though we haven't said anything
|
|
|
|
about the lifetimes involved in `obj`. This works because there are rules
|
|
|
|
having to do with lifetimes and trait objects:
|
|
|
|
|
|
|
|
* The default lifetime of a trait object is `'static`.
|
|
|
|
* If we have `&'a X` or `&'a mut X`, then the default is `'a`.
|
|
|
|
* If we have a single `T: 'a` clause, then the default is `'a`.
|
|
|
|
* If we have multiple `T: 'a`-like clauses, then there is no default; we must
|
|
|
|
be explicit.
|
|
|
|
|
|
|
|
When we must be explicit, we can add a lifetime bound on a trait object like
|
|
|
|
`Box<Foo>` with the syntax `Box<Foo + 'a>` or `Box<Foo + 'static>`, depending
|
|
|
|
on what's needed. Just as with the other bounds, this means that any
|
|
|
|
implementer of the `Foo` trait that has any references inside must have the
|
|
|
|
lifetime specified in the trait object bounds as those references.
|
|
|
|
|
|
|
|
Next, let's take a look at some other advanced features dealing with traits!
|