## 哈希 map > [ch08-03-hash-maps.md](https://github.com/rust-lang/book/blob/master/second-edition/src/ch08-03-hash-maps.md) >
> commit 4f2dc564851dc04b271a2260c834643dfd86c724 最后介绍的常用集合类型是 **哈希 map**(*hash map*)。`HashMap` 类型储存了一个键类型 `K` 对应一个值类型 `V` 的映射。它通过一个**哈希函数**(*hashing function*)来实现映射,决定如何将键和值放入内存中。很多编程语言支持这种数据结构,不过通常有不同的名字:哈希、map、对象、哈希表或者关联数组,仅举几例。 哈希 map 可以用于需要任何类型作为键来寻找数据的情况,而不是像 vector 那样通过索引。例如,在一个游戏中,你可以将每个团队的分数记录到哈希 map 中,其中键是队伍的名字而值是每个队伍的分数。给出一个队名,就能得到他们的得分。 本章我们会介绍哈希 map 的基本 API,不过还有更多吸引人的功能隐藏于标准库中的`HashMap`定义的函数中。请一如既往地查看标准库文档来了解更多信息。 ### 新建一个哈希 map 可以使用`new`创建一个空的`HashMap`,并使用`insert`来增加元素。这里我们记录两支队伍的分数,分别是蓝队和黄队。蓝队开始有 10 分而黄队开始有 50 分: ```rust use std::collections::HashMap; let mut scores = HashMap::new(); scores.insert(String::from("Blue"), 10); scores.insert(String::from("Yellow"), 50); ``` 注意必须首先 `use` 标准库中集合部分的 `HashMap`。在这三个常用集合中,`HashMap` 是最不常用的,所以并没有被 prelude 自动引用。标准库中对 `HashMap` 的支持也相对较少,例如,并没有内建的构建宏。 像 vector 一样,哈希 map 将他们的数据储存在堆上,这个 `HashMap` 的键类型是 `String` 而值类型是 `i32`。同样类似于 vector,哈希 map 是同质的:所有的键必须是相同类型,值也必须都是相同类型。 另一个构建哈希 map 的方法是使用一个元组的 vector 的 `collect` 方法,其中每个元组包含一个键值对。`collect` 方法可以将数据收集进一系列的集合类型,包括 `HashMap`。例如,如果队伍的名字和初始分数分别在两个 vector 中,可以使用 `zip` 方法来创建一个元组的 vector,其中“Blue”与 10 是一对,依此类推。接着就可以使用 `collect` 方法将这个元组 vector 转换成一个 `HashMap`: ```rust use std::collections::HashMap; let teams = vec![String::from("Blue"), String::from("Yellow")]; let initial_scores = vec![10, 50]; let scores: HashMap<_, _> = teams.iter().zip(initial_scores.iter()).collect(); ``` 这里`HashMap<_, _>`类型注解是必要的,因为可能`collect`进很多不同的数据结构,而除非显式指定 Rust 无从得知你需要的类型。但是对于键和值的类型参数来说,可以使用下划线占位,而 Rust 能够根据 vector 中数据的类型推断出 `HashMap` 所包含的类型。 ### 哈希 map 和所有权 对于像`i32`这样的实现了`Copy` trait 的类型,其值可以拷贝进哈希 map。对于像`String`这样拥有所有权的值,其值将被移动而哈希 map 会成为这些值的所有者: ```rust use std::collections::HashMap; let field_name = String::from("Favorite color"); let field_value = String::from("Blue"); let mut map = HashMap::new(); map.insert(field_name, field_value); // field_name and field_value are invalid at this point ``` 当`insert`调用将`field_name`和`field_value`移动到哈希 map 中后,将不能使用这两个绑定。 如果将值的引用插入哈希 map,这些值本身将不会被移动进哈希 map。但是这些引用指向的值必须至少在哈希 map 有效时也是有效的。第十章生命周期部分将会更多的讨论这个问题。 ### 访问哈希 map 中的值 可以通过`get`方法并提供对应的键来从哈希 map 中获取值: ```rust use std::collections::HashMap; let mut scores = HashMap::new(); scores.insert(String::from("Blue"), 10); scores.insert(String::from("Yellow"), 50); let team_name = String::from("Blue"); let score = scores.get(&team_name); ``` 这里,`score` 是与蓝队分数相关的值,应为 `Some(10)`。因为 `get` 返回 `Option`,所以结果被装进 `Some`;如果某个键在哈希 map 中没有对应的值,`get` 会返回 `None`。这时就要用某种第六章提到的方法来处理 `Option`。 可以使用与 vector 类似的方式来遍历哈希 map 中的每一个键值对,也就是`for`循环: ```rust use std::collections::HashMap; let mut scores = HashMap::new(); scores.insert(String::from("Blue"), 10); scores.insert(String::from("Yellow"), 50); for (key, value) in &scores { println!("{}: {}", key, value); } ``` 这会以任意顺序打印出每一个键值对: ``` Yellow: 50 Blue: 10 ``` ### 更新哈希 map 尽管键值对的数量是可以增长的,不过任何时候,每个键只能关联一个值。当你想要改变哈希 map 中的数据时,根据目标键是否有值以及值的更新策略分成多种情况,下面我们了解一下: #### 覆盖一个值 如果我们插入了一个键值对,接着用相同的键插入一个不同的值,与这个键相关联的旧值将被替换。即便下面的代码调用了两次`insert`,哈希 map 也只会包含一个键值对,因为两次都是对蓝队的键插入的值: ```rust use std::collections::HashMap; let mut scores = HashMap::new(); scores.insert(String::from("Blue"), 10); scores.insert(String::from("Blue"), 25); println!("{:?}", scores); ``` 这会打印出`{"Blue": 25}`。原始的值 10 将被覆盖。 #### 只在键没有对应值时插入 我们经常会检查某个特定的键是否有值,如果没有就插入一个值。为此哈希 map 有一个特有的 API,叫做`entry`,它获取我们想要检查的键作为参数。`entry`函数的返回值是一个枚举,`Entry`,它代表了可能存在也可能不存在的值。比如说我们想要检查黄队的键是否关联了一个值。如果没有,就插入值 50,对于蓝队也是如此。使用 entry API 的代码看起来像这样: ```rust use std::collections::HashMap; let mut scores = HashMap::new(); scores.insert(String::from("Blue"), 10); scores.entry(String::from("Yellow")).or_insert(50); scores.entry(String::from("Blue")).or_insert(50); println!("{:?}", scores); ``` `Entry`的`or_insert`方法在键对应的值存在时就返回这个值的`Entry`,如果不存在则将参数作为新值插入并返回修改过的`Entry`。这比编写自己的逻辑要简明的多,另外也与借用检查器结合得更好。 这段代码会打印出`{"Yellow": 50, "Blue": 10}`。第一个`entry`调用会插入黄队的键和值 50,因为黄队并没有一个值。第二个`entry`调用不会改变哈希 map 因为蓝队已经有了值 10。 #### 根据旧值更新一个值 另一个常见的哈希 map 的应用场景是找到一个键对应的值并根据旧的值更新它。例如,如果我们想要计数一些文本中每一个单词分别出现了多少次,就可以使用哈希 map,以单词作为键并递增其值来记录我们遇到过几次这个单词。如果是第一次看到某个单词,就插入值`0`。 ```rust use std::collections::HashMap; let text = "hello world wonderful world"; let mut map = HashMap::new(); for word in text.split_whitespace() { let count = map.entry(word).or_insert(0); *count += 1; } println!("{:?}", map); ``` 这会打印出`{"world": 2, "hello": 1, "wonderful": 1}`,`or_insert`方法事实上会返回这个键的值的一个可变引用(`&mut V`)。这里我们将这个可变引用储存在`count`变量中,所以为了赋值必须首先使用星号(`*`)解引用`count`。这个可变引用在`for`循环的结尾离开作用域,这样所有这些改变都是安全的并符合借用规则。 ### 哈希函数 `HashMap`默认使用一种密码学安全的哈希函数,它可以抵抗拒绝服务(Denial of Service, DoS)攻击。然而并不是最快的,不过为了更高的安全性值得付出一些性能的代价。如果性能监测显示此哈希函数非常慢,以致于你无法接受,你可以指定一个不同的 *hasher* 来切换为其它函数。hasher 是一个实现了`BuildHasher` trait 的类型。第十章会讨论 trait 和如何实现他们。你并不需要从头开始实现你自己的 hasher;crates.io 有其他人分享的实现了许多常用哈希算法的 hasher 的库。 ## 总结 vector、字符串和哈希 map 会在你的程序需要储存、访问和修改数据时帮助你。这里有一些你应该能够解决的练习问题: * 给定一系列数字,使用 vector 并返回这个列表的平均数(mean, average)、中位数(排列数组后位于中间的值)和众数(mode,出现次数最多的值;这里哈希函数会很有帮助)。 * 将字符串转换为 Pig Latin,也就是每一个单词的第一个辅音字母被移动到单词的结尾并增加“ay”,所以“first”会变成“irst-fay”。元音字母开头的单词则在结尾增加 “hay”(“apple”会变成“apple-hay”)。牢记 UTF-8 编码! * 使用哈希 map 和 vector,创建一个文本接口来允许用户向公司的部门中增加员工的名字。例如,“Add Sally to Engineering”或“Add Amir to Sales”。接着让用户获取一个部门的所有员工的列表,或者公司每个部门的所有员工按照字母顺排序的列表。 标准库 API 文档中描述的这些类型的方法将有助于你进行这些练习! 我们已经开始接触可能会有失败操作的复杂程序了,这也意味着接下来是一个了解错误处理的绝佳时机!