## 所有的模式语法
通过本书我们已领略过一些不同类型模式的例子. 本节会列出所有在模式中有效的语法并且会阐述你为什么可能会用到它们中的每一个.
### 字面量
我们在第6章已经见过, 你可以直接匹配字面量:
```rust
let x = 1;
match x {
1 => println!("one"),
2 => println!("two"),
3 => println!("three"),
_ => println!("anything"),
}
```
这段代码会打印`one`因为`x`的值是1.
### 命名变量
命名变量是可匹配任何值的`irrefutable`(不可反驳)模式.
与所有变量一样, 模式中声明的变量会屏蔽`match`表达式外层的同名变量, 因为一个`match`表达式会开启一个新的作用域. 在列表18-10中, 我们声明了一个值为`Some(5)`的变量`x`和一个值为`10`的变量`y`. 然后是一个值`x`上的`match`表达式. 看一看匹配分支的模式和结尾的`println!`, 你可以在继续阅读或运行代码前猜一猜什么会被打印出来:
Filename: src/main.rs
```rust
fn main() {
let x = Some(5);
let y = 10;
match x {
Some(50) => println!("Got 50"),
Some(y) => println!("Matched, y = {:?}", y),
_ => println!("Default case, x = {:?}", x),
}
println!("at the end: x = {:?}, y = {:?}", x, y);
}
```
列表18-10: 引入了一个阴影变量`y`的`match`语句
让我们看看当`match`语句运行的时候发生了什么. 第一个匹配分支是模式`Some(50)`, `x`中的值(`Some(5)`)不匹配`Some(50)`, 所以我们继续. 在第二个匹配分支中, 模式`Some(y)`引入了一个可以匹配在`Some`里的任意值的新变量`y`. 因为我们位于`match`表达式里面的新作用域中, 所以`y`就是一个新变量而不是在开头被声明的其值为10的变量`y`. 这个新的`y`绑定将会匹配在`Some`中的任意值, 这里也就是`x`中的值, 因为`y`绑定到`Some`中的值是`x`, 这里是5, 所以我们就执行了这个分支中的表达式并打印出`Matched, y = 5`.
如果`x`的值是`None`而不是`Some(5)`, 我们将会匹配下划线因为其它两个分支的模式将不会被匹配. 在这个匹配分支(下划线)的表达式里, 因为我们没有在分支的模式中引入变量`x`, 所以这个`x`仍然是`match`作用域外部的那个没被屏蔽的`x`. 在这个假想的例子中, `match`表达式将会打印出`Default case, x =
None`.
一旦`match`表达式执行完毕, 它的作用域也就结束了, 同时`match`内部的`y`也就结束了. 最后的`println!`会打印`at the end: x = Some(5), y = 10`.
为了让`match`表达式能比较外部变量`x`和`y`的值而不是内部引入的阴影变量`x`和`y`, 我们需要使用一个有条件的匹配守卫(guard). 我们将在本节的后面讨论匹配守卫.
### 多种模式
只有在`match`表达式中, 你可以通过`|`符号匹配多个模式, 它代表*或*(*or*)的意思:
```rust
let x = 1;
match x {
1 | 2 => println!("one or two"),
3 => println!("three"),
_ => println!("anything"),
}
```
上面的代码会打印`one or two`.
### 通过`...`匹配值的范围
你可以用`...`匹配一个值包含的范围:
```rust
let x = 5;
match x {
1 ... 5 => println!("one through five"),
_ => println!("something else"),
}
```
上面的代码中, 如果`x`是1、 2、 3、 4或5, 第一个分支就会匹配.
范围只能是数字或`char`类型的值. 下面是一个使用`char`类型值范围的例子:
```rust
let x = 'c';
match x {
'a' ... 'j' => println!("early ASCII letter"),
'k' ... 'z' => println!("late ASCII letter"),
_ => println!("something else"),
}
```
上面的代码会打印`early ASCII letter`.
### 解构提取值
模式可以用来*解构*(*destructure*)结构、枚举、元组和引用. 解构意味着把一个值分解成它的组成部分. 例18-11中的结构`Point`有两个字段`x`和`y`, 我们可以通过一个模式和`let`语句来进行提取:
Filename: src/main.rs
```rust
struct Point {
x: i32,
y: i32,
}
fn main() {
let p = Point { x: 0, y: 7 };
let Point { x, y } = p;
assert_eq!(0, x);
assert_eq!(7, y);
}
```
例18-11: 用结构的字段来解构
上面的代码创建了匹配`p`中的`x`和`y`字段的变量`x`和`y`. 变量的名字必须匹配使用了这个写法中的字段. 如果我们想使用不同的变量名字, 我们可以在模式中使用`field_name: variable_name`. 在例18-12中, `a`会拥有`Point`实例的`x`字段的值, `b`会拥有`y`字段的值:
Filename: src/main.rs
```rust
struct Point {
x: i32,
y: i32,
}
fn main() {
let p = Point { x: 0, y: 7 };
let Point { x: a, y: b } = p;
assert_eq!(0, a);
assert_eq!(7, b);
}
```
例18-12: 把结构解构到与字段不同名的变量中
为了测试和使用一个值内部的某个属性, 我们也可以用字面量来解构. 例18-13用一个`match`语句来判断一个点是位于`x`(此时`y` = 0)轴上还是在`y`(此时`x` = 0)轴上或者不在两个轴上面:
```rust
# struct Point {
# x: i32,
# y: i32,
# }
#
fn main() {
let p = Point { x: 0, y: 7 };
match p {
Point { x, y: 0 } => println!("On the x axis at {}", x),
Point { x: 0, y } => println!("On the y axis at {}", y),
Point { x, y } => println!("On neither axis: ({}, {})", x, y),
}
}
```
例18-13: 解构和匹配一个模式中的字面量
上面的代码会打印`On the y axis at 7`, 因为`p`的`x`字段的值是0, 这正好匹配第二个分支.
在第6章中我们对枚举进行了解构, 比如例6-5中, 我们用一个`match`表达式来解构一个`Option`, 其中被提取出来的一个值是`Some`内的变量.
当我们正匹配的值在一个包含了引用的模式里面时, 为了把引用和值分割开我们可以在模式中指定一个`&`符号. 在迭代器对值的引用进行迭代时当我们想在闭包中使用值而不是引用的时侯这个符号在闭包里特别有用. 例18-14演示了如何在一个向量里迭代`Point`实例的引用, 为了能方便地对`x`和`y`的值进行计算还对引用的结构进行了解构:
```rust
# struct Point {
# x: i32,
# y: i32,
# }
#
let points = vec![
Point { x: 0, y: 0 },
Point { x: 1, y: 5 },
Point { x: 10, y: -3 },
];
let sum_of_squares: i32 = points
.iter()
.map(|&Point {x, y}| x * x + y * y)
.sum();
```
例18-14: 把结构的引用解构到结构的字段值中
因为`iter`会对向量里面的项目的引用进行迭代, 如果我们在`map`里的闭包的参数上忘了`&`符号, 我们将会得到下面的类型不匹配的错误:
```text
error[E0308]: mismatched types
-->
|
14 | .map(|Point {x, y}| x * x + y * y)
| ^^^^^^^^^^^^ expected &Point, found struct `Point`
|
= note: expected type `&Point`
found type `Point`
```
这个报错提示Rust希望我们的闭包匹配参数匹配`&Point`, 但是我们却试图用一个`Point`的值的模式去匹配它, 而不是一个`Point`的引用.
我们可以用更复杂的方法来合成、匹配和嵌套解构模式: 下例中我们通过在一个元组中嵌套结构和元组来解构出所有的基础类型的值:
```rust
# struct Point {
# x: i32,
# y: i32,
# }
#
let ((feet, inches), Point {x, y}) = ((3, 10), Point { x: 3, y: -10 });
```
这使得我们把复杂的类型提取成了它们的组成成分.
### 忽略模式中的值
有一些简单的方法可以忽略模式中全部或部分值: 使用`_`模式, 在另一个模式中使用`_`模式, 使用一个以下划线开始的名字, 或者使用`..`来忽略掉所有剩下的值. 下面让我们来探索如何以及为什么要这么做.
#### 用`_`忽略整个值
我们已经见过了用下划线作为通配符会匹配任意值, 但是它不会绑定值. 把下划线模式用作`match`表达式的最后一个匹配分支特别有用, 我们可以在任意模式中使用它, 比如在例18-15中显示的函数参数:
```rust
fn foo(_: i32) {
// code goes here
}
```
例18-15: 在一个函数签名中使用`_`
通常, 你应该把这种函数的参数声明改成不用无用参数. 如果是要实现这样一个有特定类型签名的*trait*, 使用下划线可以让你忽略一个参数, 并且编译器不会像使用命名参数那样警告有未使用的函数参数.
#### 用一个嵌套的`_`忽略部分值
我们也可以在另一个模式中使用`_`来忽略部分值. 在例18-16中, 第一个`match`分支中的模式匹配了一个`Some`值, 但是却通过下划线忽略掉了`Some`变量中的值:
```rust
let x = Some(5);
match x {
Some(_) => println!("got a Some and I don't care what's inside"),
None => (),
}
```
例18-16: 通过使用一个嵌套的下划线忽略`Some`变量中的值
当代码关联的`match`分支不需要使用被嵌套的全部变量时这很有用.
我们也可以在一个模式中多处使用下划线, 在例18-17中我们将忽略掉一个五元元组中的第二和第四个值:
```rust
let numbers = (2, 4, 8, 16, 32);
match numbers {
(first, _, third, _, fifth) => {
println!("Some numbers: {}, {}, {}", first, third, fifth)
},
}
```
例18-17: 忽略元组中的多个部分
上面的代码将会打印出`Some numbers: 2, 8, 32`, 元组中的4和16会被忽略.
#### 通过在名字前以一个下划线开头来忽略不使用的变量
如果你创建了一个变量却不使用它, Rust通常会给你一个警告, 因为这可能会是个bug. 如果你正在做原型或者刚开启一个项目, 那么你可能会创建一个暂时不用但是以后会使用的变量. 如果你面临这个情况并且希望Rust不要对你警告未使用的变量, 你可以让那个变量以一个下划线开头. 这和其它模式中的变量名没什么区别, 只是Rust不会警告你这个变量没用被使用. 在例18-18中, 我们会得到一个没用使用变量`y`的警告, 但是我们不会得到没用使用变量`_x`的警告:
```rust
fn main() {
let _x = 5;
let y = 10;
}
```
例18-18: 为了消除对未被使用变量的警告以一个下划线开始来命名变量
Note that there is a subtle difference between using only `_` and using a name
that starts with an underscore like `_x`: `_x` still binds the value to the
variable, but `_` doesn't bind at all.
Listing 18-19 shows a case where this distinction matters: `s` will still be
moved into `_s`, which prevents us from using `s` again:
```rust,ignore
let s = Some(String::from("Hello!"));
if let Some(_s) = s {
println!("found a string");
}
println!("{:?}", s);
```
Listing 18-19: An unused variable starting with an
underscore still binds the value, which may take ownership of the value
Using underscore by itself, however, doesn't ever bind to the value. Listing
18-20 will compile without any errors since `s` does not get moved into `_`:
```rust
let s = Some(String::from("Hello!"));
if let Some(_) = s {
println!("found a string");
}
println!("{:?}", s);
```
Listing 18-20: Using underscore does not bind the
value
This works just fine. Because we never bind `s` to anything, it's not moved.
#### Ignoring Remaining Parts of a Value with `..`
With values that have many parts, we can extract only a few parts and avoid
having to list underscores for each remaining part by instead using `..`. The
`..` pattern will ignore any parts of a value that we haven't explicitly
matched in the rest of the pattern. In Listing 18-21, we have a `Point` struct
that holds a coordinate in three dimensional space. In the `match` expression,
we only want to operate on the `x` coordinate and ignore the values in the `y`
and `z` fields:
```rust
struct Point {
x: i32,
y: i32,
z: i32,
}
let origin = Point { x: 0, y: 0, z: 0 };
match origin {
Point { x, .. } => println!("x is {}", x),
}
```
Listing 18-21: Ignoring all fields of a `Point` except
for `x` by using `..`
Using `..` is shorter to type than having to list out `y: _` and `z: _`. The
`..` pattern is especially useful when working with structs that have lots of
fields in situations where only one or two fields are relevant.
`..` will expand to as many values as it needs to be. Listing 18-22 shows a use
of `..` with a tuple:
```rust
fn main() {
let numbers = (2, 4, 8, 16, 32);
match numbers {
(first, .., last) => {
println!("Some numbers: {}, {}", first, last);
},
}
}
```
Listing 18-22: Matching only the first and last values in
a tuple and ignoring all other values with `..`
Here, we have the first and last value matched, with `first` and `last`. The
`..` will match and ignore all of the things in the middle.
Using `..` must be unambiguous, however. Listing 18-23 shows an example where
it's not clear to Rust which values we want to match and which values we want
to ignore:
```rust,ignore
fn main() {
let numbers = (2, 4, 8, 16, 32);
match numbers {
(.., second, ..) => {
println!("Some numbers: {}", second)
},
}
}
```
Listing 18-23: An attempt to use `..` in a way that is
ambiguous
If we compile this example, we get this error:
```text
error: `..` can only be used once per tuple or tuple struct pattern
--> src/main.rs:5:22
|
5 | (.., second, ..) => {
| ^^
```
It's not possible to determine how many values in the tuple should be ignored
before one value is matched with `second`, and then how many further values are
ignored after that. We could mean that we want to ignore 2, bind `second` to 4,
then ignore 8, 16, and 32, or we could mean that we want to ignore 2 and 4,
bind `second` to 8, then ignore 16 and 32, and so forth. The variable name
`second` doesn't mean anything special to Rust, so we get a compiler error
since using `..` in two places like this is ambiguous.
### `ref` and `ref mut` to Create References in Patterns
Usually, when you match against a pattern, the variables that the pattern
introduces are bound to a value. This means you'll end up moving the value into
the `match` (or wherever you're using the pattern) since the ownership rules
apply. Listing 18-24 shows an example:
```rust,ignore
let robot_name = Some(String::from("Bors"));
match robot_name {
Some(name) => println!("Found a name: {}", name),
None => (),
}
println!("robot_name is: {:?}", robot_name);
```
Listing 18-24: Creating a variable in a match arm pattern
takes ownership of the value
This example will fail to compile since the value inside the `Some` value in
`robot_name` is moved within the `match` when `name` binds to that value.
Using `&` in a pattern matches an existing reference in the value, as we saw in
the "Destructuring to Break Apart Values" section. If you want to create a
reference instead in order to borrow the value in a pattern variable, use the
`ref` keyword before the new variable, as shown in Listing 18-25:
```rust
let robot_name = Some(String::from("Bors"));
match robot_name {
Some(ref name) => println!("Found a name: {}", name),
None => (),
}
println!("robot_name is: {:?}", robot_name);
```
Listing 18-25: Creating a reference so that a pattern
variable does not take ownership of a value
This example will compile because the value in the `Some` variant in
`robot_name` is not moved into the `Some(ref name)` arm of the match; the match
only took a reference to the data in `robot_name` rather than moving it.
To create a mutable reference, use `ref mut` for the same reason as shown in
Listing 18-26:
```rust
let mut robot_name = Some(String::from("Bors"));
match robot_name {
Some(ref mut name) => *name = String::from("Another name"),
None => (),
}
println!("robot_name is: {:?}", robot_name);
```
Listing 18-26: Creating a mutable reference to a value as
part of a pattern using `ref mut`
This example will compile and print `robot_name is: Some("Another name")`.
Since `name` is a mutable reference, within the match arm code, we need to
dereference using the `*` operator in order to be able to mutate the value.
### Extra Conditionals with Match Guards
You can introduce *match guards* as part of a match arm by specifying an
additional `if` conditional after the pattern. The conditional can use
variables created in the pattern. Listing 18-27 has a `match` expression with a
match guard in the first arm:
```rust
let num = Some(4);
match num {
Some(x) if x < 5 => println!("less than five: {}", x),
Some(x) => println!("{}", x),
None => (),
}
```
Listing 18-27: Adding a match guard to a pattern
This example will print `less than five: 4`. If `num` was instead `Some(7)`,
this example would print `7`. Match guards allow you to express more complexity
than patterns alone give you.
In Listing 18-10, we saw that since patterns shadow variables, we weren't able
to specify a pattern to express the case when a value was equal to a variable
outside the `match`. Listing 18-28 shows how we can use a match guard to
accomplish this:
```rust
fn main() {
let x = Some(5);
let y = 10;
match x {
Some(50) => println!("Got 50"),
Some(n) if n == y => println!("Matched, n = {:?}", n),
_ => println!("Default case, x = {:?}", x),
}
println!("at the end: x = {:?}, y = {:?}", x, y);
}
```
Listing 18-28: Using a match guard to test for equality
with an outer variable
This will now print `Default case, x = Some(5)`. Because the second match arm
is not introducing a new variable `y` that shadows the outer `y` in the
pattern, we can use `y` in the match guard. We're still destructuring `x` to
get the inner value `n`, and then we can compare `n` and `y` in the match guard.
If you're using a match guard with multiple patterns specified by `|`, the
match guard condition applies to all of the patterns. Listing 18-29 shows a
match guard that applies to the value matched by all three patterns in the
first arm:
```rust
let x = 4;
let y = false;
match x {
4 | 5 | 6 if y => println!("yes"),
_ => println!("no"),
}
```
Listing 18-29: Combining multiple patterns with a match
guard
This prints `no` since the `if` condition applies to the whole pattern `4 | 5 |
6`, not only to the last value `6`. In other words, the precedence of a match
guard in relation to a pattern behaves like this:
```text
(4 | 5 | 6) if y => ...
```
rather than this:
```text
4 | 5 | (6 if y) => ...
```
### `@` Bindings
In order to test a value in a pattern but also be able to create a variable
bound to the value, we can use `@`. Listing 18-30 shows an example where we
want to test that a `Message::Hello` `id` field is within the range `3...7` but
also be able to bind to the value so that we can use it in the code associated
with the arm:
```rust
enum Message {
Hello { id: i32 },
}
let msg = Message::Hello { id: 5 };
match msg {
Message::Hello { id: id @ 3...7 } => {
println!("Found an id in range: {}", id)
},
Message::Hello { id: 10...12 } => {
println!("Found an id in another range")
},
Message::Hello { id } => {
println!("Found some other id: {}", id)
},
}
```
Listing 18-30: Using `@` to bind to a value in a pattern
while also testing it
This example will print `Found an id in range: 5`. By specifying `id @` before
the range, we're capturing whatever value matched the range while also testing
it. In the second arm where we only have a range specified in the pattern, the
code associated with the arm doesn't know if `id` is 10, 11, or 12, since we
haven't saved the `id` value in a variable: we only know that the value matched
something in that range if that arm's code is executed. In the last arm where
we've specified a variable without a range, we do have the value available to
use in the arm's code, but we haven't applied any other test to the value.
Using `@` lets us test a value and save it in a variable within one pattern.
## Summary
Patterns are a useful feature of Rust that help to distinguish between
different kinds of data. When used in `match` statements, Rust makes sure that
your patterns cover every possible value. Patterns in `let` statements and
function parameters make those constructs more powerful, enabling the
destructuring of values into smaller parts at the same time as assigning to
variables.
Now, for the penultimate chapter of the book, let's take a look at some
advanced parts of a variety of Rust's features.