## 方法语法
> [ch05-03-method-syntax.md](https://github.com/rust-lang/book/blob/main/src/ch05-03-method-syntax.md)
>
> commit b4132ae4991b16076ca2293b0c2c3283a7a1b951
**方法** 与函数类似:它们使用 `fn` 关键字和名称声明,可以拥有参数和返回值,同时包含在某处调用该方法时会执行的代码。不过方法与函数是不同的,因为它们在结构体的上下文中被定义(或者是枚举或 trait 对象的上下文,将分别在第六章和第十七章讲解),并且它们第一个参数总是 `self`,它代表调用该方法的结构体实例。
### 定义方法
让我们把前面实现的获取一个 `Rectangle` 实例作为参数的 `area` 函数,改写成一个定义于 `Rectangle` 结构体上的 `area` 方法,如示例 5-13 所示:
文件名: src/main.rs
```rust
#[derive(Debug)]
struct Rectangle {
width: u32,
height: u32,
}
impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height
}
}
fn main() {
let rect1 = Rectangle { width: 30, height: 50 };
println!(
"The area of the rectangle is {} square pixels.",
rect1.area()
);
}
```
示例 5-13:在 `Rectangle` 结构体上定义 `area` 方法
为了使函数定义于 `Rectangle` 的上下文中,我们开始了一个 `impl` 块(`impl` 是 *implementation* 的缩写),这个 `impl` 块中的所有内容都将与 `Rectangle` 类型相关联。接着将 `area` 函数移动到 `impl` 大括号中,并将签名中的第一个(在这里也是唯一一个)参数和函数体中其他地方的对应参数改成 `self`。然后在 `main` 中将我们先前调用 `area` 方法并传递 `rect1` 作为参数的地方,改成使用 **方法语法**(*method syntax*)在 `Rectangle` 实例上调用 `area` 方法。方法语法获取一个实例并加上一个点号,后跟方法名、圆括号以及任何参数。
在 `area` 的签名中,使用 `&self` 来替代 `rectangle: &Rectangle`,`&self` 实际上是 `self: &Self` 的缩写。在一个 `impl` 块中,`Self` 类型是 `impl` 块的类型的别名。方法的第一个参数必须有一个名为 `self` 的`Self` 类型的参数,所以 Rust 让你在第一个参数位置上只用 `self` 这个名字来缩写。注意,我们仍然需要在 `self` 前面使用 `&` 来表示这个方法借用了 `Self` 实例,就像我们在 `rectangle: &Rectangle` 中做的那样。方法可以选择获得 `self` 的所有权,或者像我们这里一样不可变地借用 `self`,或者可变地借用 `self`,就跟其他参数一样。
这里选择 `&self` 的理由跟在函数版本中使用 `&Rectangle` 是相同的:我们并不想获取所有权,只希望能够读取结构体中的数据,而不是写入。如果想要在方法中改变调用方法的实例,需要将第一个参数改为 `&mut self`。通过仅仅使用 `self` 作为第一个参数来使方法获取实例的所有权是很少见的;这种技术通常用在当方法将 `self` 转换成别的实例的时候,这时我们想要防止调用者在转换之后使用原始的实例。
使用方法替代函数,除了可使用方法语法和不需要在每个函数签名中重复 `self` 的类型之外,其主要好处在于组织性。我们将某个类型实例能做的所有事情都一起放入 `impl` 块中,而不是让将来的用户在我们的库中到处寻找 `Rectangle` 的功能。
请注意,我们可以选择将方法的名称与结构中的一个字段相同。例如,我们可以在 `Rectangle` 上定义一个方法,并命名为 `width`:
文件名: src/main.rs
```rust
impl Rectangle {
fn width(&self) -> bool {
self.width > 0
}
}
fn main() {
let rect1 = Rectangle {
width: 30,
height: 50,
};
if rect1.width() {
println!("The rectangle has a nonzero width; it is {}", rect1.width);
}
}
```
在这里,我们选择让 `width` 方法的行为是如果实例的 `width` 字段的值大于 0,返回 `true`。如果该值为 0,则返回 `false`:我们可以在同名的方法中使用一个字段。我们可以在同名的方法中使用一个字段来达到任何目的。在 `main` 中,当我们在 `rect1.width` 后面加上括号时。Rust 知道我们指的是方法 `width`。当我们不使用圆括号时,Rust 知道我们指的是字段 `width`。
通常,但并不总是如此,与字段同名的方法将被定义为只返回字段中的值,而不做其他事情。这样的方法被称为 *getters*,Rust 并不像其他一些语言那样为结构字段自动实现它们。Getters 很有用,因为你可以把字段变成私有的,但方法是公共的,这样就可以把对字段的只读访问作为该类型公共 API 的一部分。我们将在第七章中讨论什么是公有和私有,以及如何将一个字段或方法指定为公有或私有。
> ### `->` 运算符到哪去了?
>
> 在 C/C++ 语言中,有两个不同的运算符来调用方法:`.` 直接在对象上调用方法,而 `->` 在一个对象的指针上调用方法,这时需要先解引用(dereference)指针。换句话说,如果 `object` 是一个指针,那么 `object->something()` 就像 `(*object).something()` 一样。
>
> Rust 并没有一个与 `->` 等效的运算符;相反,Rust 有一个叫 **自动引用和解引用**(*automatic referencing and dereferencing*)的功能。方法调用是 Rust 中少数几个拥有这种行为的地方。
>
> 它是这样工作的:当使用 `object.something()` 调用方法时,Rust 会自动为 `object` 添加 `&`、`&mut` 或 `*` 以便使 `object` 与方法签名匹配。也就是说,这些代码是等价的:
>
>
> ```rust
> # #[derive(Debug,Copy,Clone)]
> # struct Point {
> # x: f64,
> # y: f64,
> # }
> #
> # impl Point {
> # fn distance(&self, other: &Point) -> f64 {
> # let x_squared = f64::powi(other.x - self.x, 2);
> # let y_squared = f64::powi(other.y - self.y, 2);
> #
> # f64::sqrt(x_squared + y_squared)
> # }
> # }
> # let p1 = Point { x: 0.0, y: 0.0 };
> # let p2 = Point { x: 5.0, y: 6.5 };
> p1.distance(&p2);
> (&p1).distance(&p2);
> ```
>
> 第一行看起来简洁的多。这种自动引用的行为之所以有效,是因为方法有一个明确的接收者———— `self` 的类型。在给出接收者和方法名的前提下,Rust 可以明确地计算出方法是仅仅读取(`&self`),做出修改(`&mut self`)或者是获取所有权(`self`)。事实上,Rust 对方法接收者的隐式借用让所有权在实践中更友好。
### 带有更多参数的方法
让我们通过实现 `Rectangle` 结构体上的另一方法来练习使用方法。这回,我们让一个 `Rectangle` 的实例获取另一个 `Rectangle` 实例,如果 `self` 能完全包含第二个长方形则返回 `true`;否则返回 `false`。一旦定义了 `can_hold` 方法,就可以编写示例 5-14 中的代码。
文件名: src/main.rs
```rust,ignore
fn main() {
let rect1 = Rectangle { width: 30, height: 50 };
let rect2 = Rectangle { width: 10, height: 40 };
let rect3 = Rectangle { width: 60, height: 45 };
println!("Can rect1 hold rect2? {}", rect1.can_hold(&rect2));
println!("Can rect1 hold rect3? {}", rect1.can_hold(&rect3));
}
```
示例 5-14:使用还未实现的 `can_hold` 方法
同时我们希望看到如下输出,因为 `rect2` 的两个维度都小于 `rect1`,而 `rect3` 比 `rect1` 要宽:
```text
Can rect1 hold rect2? true
Can rect1 hold rect3? false
```
因为我们想定义一个方法,所以它应该位于 `impl Rectangle` 块中。方法名是 `can_hold`,并且它会获取另一个 `Rectangle` 的不可变借用作为参数。通过观察调用方法的代码可以看出参数是什么类型的:`rect1.can_hold(&rect2)` 传入了 `&rect2`,它是一个 `Rectangle` 的实例 `rect2` 的不可变借用。这是可以理解的,因为我们只需要读取 `rect2`(而不是写入,这意味着我们需要一个不可变借用),而且希望 `main` 保持 `rect2` 的所有权,这样就可以在调用这个方法后继续使用它。`can_hold` 的返回值是一个布尔值,其实现会分别检查 `self` 的宽高是否都大于另一个 `Rectangle`。让我们在示例 5-13 的 `impl` 块中增加这个新的 `can_hold` 方法,如示例 5-15 所示:
文件名: src/main.rs
```rust
# #[derive(Debug)]
# struct Rectangle {
# width: u32,
# height: u32,
# }
#
impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height
}
fn can_hold(&self, other: &Rectangle) -> bool {
self.width > other.width && self.height > other.height
}
}
```
示例 5-15:在 `Rectangle` 上实现 `can_hold` 方法,它获取另一个 `Rectangle` 实例作为参数
如果结合示例 5-14 的 `main` 函数来运行,就会看到期望的输出。在方法签名中,可以在 `self` 后增加多个参数,而且这些参数就像函数中的参数一样工作。
### 关联函数
所有在 `impl` 块中定义的函数被称为 **关联函数**(*associated functions*),因为它们与 `impl` 后面命名的类型相关。我们可以定义不以 `self` 为第一参数的关联函数(因此不是方法),因为它们并不作用于一个结构体的实例。我们已经使用了一个这样的函数,`String::from` 函数,它是在 `String` 类型上定义的。
不是方法的关联函数经常被用作返回一个结构体新实例的构造函数,例如我们可以提供一个关联函数,它接受一个维度参数并且同时作为宽和高,这样可以更轻松的创建一个正方形 `Rectangle` 而不必指定两次同样的值:
文件名: src/main.rs
```rust
# #[derive(Debug)]
# struct Rectangle {
# width: u32,
# height: u32,
# }
#
impl Rectangle {
fn square(size: u32) -> Rectangle {
Rectangle { width: size, height: size }
}
}
```
使用结构体名和 `::` 语法来调用这个关联函数:比如 `let sq = Rectangle::square(3);`。这个方法位于结构体的命名空间中:`::` 语法用于关联函数和模块创建的命名空间。第七章会讲到模块。
### 多个 `impl` 块
每个结构体都允许拥有多个 `impl` 块。例如,示例 5-16 中的代码等同于示例 5-15,但每个方法有其自己的 `impl` 块。
```rust
# #[derive(Debug)]
# struct Rectangle {
# width: u32,
# height: u32,
# }
#
impl Rectangle {
fn area(&self) -> u32 {
self.width * self.height
}
}
impl Rectangle {
fn can_hold(&self, other: &Rectangle) -> bool {
self.width > other.width && self.height > other.height
}
}
```
示例 5-16:使用多个 `impl` 块重写示例 5-15
这里没有理由将这些方法分散在多个 `impl` 块中,不过这是有效的语法。第十章讨论泛型和 trait 时会看到实用的多 `impl` 块的用例。
## 总结
结构体让你可以创建出在你的领域中有意义的自定义类型。通过结构体,我们可以将相关联的数据片段联系起来并命名它们,这样可以使得代码更加清晰。在 `impl` 块中,你可以定义与你的类型相关联的函数,而方法是一种相关联的函数,让你指定结构体的实例所具有的行为。
但结构体并不是创建自定义类型的唯一方法:让我们转向 Rust 的枚举功能,为你的工具箱再添一个工具。