## `match` 控制流结构
> [ch06-02-match.md](https://github.com/rust-lang/book/blob/main/src/ch06-02-match.md)
>
> commit db403a8bdfe5223d952737f54b0d9651b3e6ae1d
Rust 有一个叫做 `match` 的极为强大的控制流运算符,它允许我们将一个值与一系列的模式相比较,并根据相匹配的模式执行相应代码。模式可由字面值、变量、通配符和许多其他内容构成;第十八章会涉及到所有不同种类的模式以及它们的作用。`match` 的力量来源于模式的表现力以及编译器检查,它确保了所有可能的情况都得到处理。
可以把 `match` 表达式想象成某种硬币分类器:硬币滑入有着不同大小孔洞的轨道,每一个硬币都会掉入符合它大小的孔洞。同样地,值也会通过 `match` 的每一个模式,并且在遇到第一个 “符合” 的模式时,值会进入相关联的代码块并在执行中被使用。
因为刚刚提到了硬币,让我们用它们来作为一个使用 `match` 的例子!我们可以编写一个函数来获取一个未知的硬币,并以一种类似验钞机的方式,确定它是何种硬币并返回它的美分值,如示例 6-3 中所示。
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/listing-06-03/src/main.rs:here}}
```
示例 6-3:一个枚举和一个以枚举成员作为模式的 `match` 表达式
拆开 `value_in_cents` 函数中的 `match` 来看。首先,我们列出 `match` 关键字后跟一个表达式,在这个例子中是 `coin` 的值。这看起来非常像 `if` 使用的表达式,不过这里有一个非常大的区别:对于 `if`,表达式必须返回一个布尔值,而这里它可以是任何类型的。例子中的 `coin` 的类型是示例 6-3 中定义的 `Coin` 枚举。
接下来是 `match` 的分支。一个分支有两个部分:一个模式和一些代码。第一个分支的模式是值 `Coin::Penny` 而之后的 `=>` 运算符将模式和将要运行的代码分开。这里的代码就仅仅是值 `1`。每一个分支之间使用逗号分隔。
当 `match` 表达式执行时,它将结果值按顺序与每一个分支的模式相比较。如果模式匹配了这个值,这个模式相关联的代码将被执行。如果模式并不匹配这个值,将继续执行下一个分支,非常类似一个硬币分类器。可以拥有任意多的分支:示例 6-3 中的 `match` 有四个分支。
每个分支相关联的代码是一个表达式,而表达式的结果值将作为整个 `match` 表达式的返回值。
如果分支代码较短的话通常不使用大括号,正如示例 6-3 中的每个分支都只是返回一个值。如果想要在分支中运行多行代码,可以使用大括号。例如,如下代码在每次使用`Coin::Penny` 调用时都会打印出 “Lucky penny!”,同时仍然返回代码块最后的值,`1`:
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/no-listing-08-match-arm-multiple-lines/src/main.rs:here}}
```
### 绑定值的模式
匹配分支的另一个有用的功能是可以绑定匹配的模式的部分值。这也就是如何从枚举成员中提取值的。
作为一个例子,让我们修改枚举的一个成员来存放数据。1999 年到 2008 年间,美国在 25 美分的硬币的一侧为 50 个州的每一个都印刷了不同的设计。其他的硬币都没有这种区分州的设计,所以只有这些 25 美分硬币有特殊的价值。可以将这些信息加入我们的 `enum`,通过改变 `Quarter` 成员来包含一个 `State` 值,示例 6-4 中完成了这些修改:
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/listing-06-04/src/main.rs:here}}
```
示例 6-4:`Quarter` 成员也存放了一个 `UsState` 值的 `Coin` 枚举
想象一下我们的一个朋友尝试收集所有 50 个州的 25 美分硬币。在根据硬币类型分类零钱的同时,也可以报告出每个 25 美分硬币所对应的州名称,这样如果我们的朋友没有的话,他可以将其加入收藏。
在这些代码的匹配表达式中,我们在匹配 `Coin::Quarter` 成员的分支的模式中增加了一个叫做 `state` 的变量。当匹配到 `Coin::Quarter` 时,变量 `state` 将会绑定 25 美分硬币所对应州的值。接着在那个分支的代码中使用 `state`,如下:
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/no-listing-09-variable-in-pattern/src/main.rs:here}}
```
如果调用 `value_in_cents(Coin::Quarter(UsState::Alaska))`,`coin` 将是 `Coin::Quarter(UsState::Alaska)`。当将值与每个分支相比较时,没有分支会匹配,直到遇到 `Coin::Quarter(state)`。这时,`state` 绑定的将会是值 `UsState::Alaska`。接着就可以在 `println!` 表达式中使用这个绑定了,像这样就可以获取 `Coin` 枚举的 `Quarter` 成员中内部的州的值。
### 匹配 `Option`
我们在之前的部分中使用 `Option` 时,是为了从 `Some` 中取出其内部的 `T` 值;我们还可以像处理 `Coin` 枚举那样使用 `match` 处理 `Option`!只不过这回比较的不再是硬币,而是 `Option` 的成员,但 `match` 表达式的工作方式保持不变。
比如我们想要编写一个函数,它获取一个 `Option` ,如果其中含有一个值,将其加一。如果其中没有值,函数应该返回 `None` 值,而不尝试执行任何操作。
得益于 `match`,编写这个函数非常简单,它将看起来像示例 6-5 中这样:
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/listing-06-05/src/main.rs:here}}
```
示例 6-5:一个在 `Option` 上使用 `match` 表达式的函数
#### 匹配 `Some(T)`
让我们更仔细地检查 `plus_one` 的第一行操作。当调用 `plus_one(five)` 时,`plus_one` 函数体中的 `x` 将会是值 `Some(5)`。接着将其与每个分支比较。
```rust,ignore
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/listing-06-05/src/main.rs:first_arm}}
```
值 `Some(5)` 并不匹配模式 `None`,所以继续进行下一个分支。
```rust,ignore
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/listing-06-05/src/main.rs:second_arm}}
```
`Some(5)` 与 `Some(i)` 匹配吗?当然匹配!它们是相同的成员。`i` 绑定了 `Some` 中包含的值,所以 `i` 的值是 `5`。接着匹配分支的代码被执行,所以我们将 `i` 的值加一并返回一个含有值 `6` 的新 `Some`。
接着考虑下示例 6-5 中 `plus_one` 的第二个调用,这里 `x` 是 `None`。我们进入 `match` 并与第一个分支相比较。
```rust,ignore
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/listing-06-05/src/main.rs:first_arm}}
```
匹配上了!这里没有值来加一,所以程序结束并返回 `=>` 右侧的值 `None`,因为第一个分支就匹配到了,其他的分支将不再比较。
将 `match` 与枚举相结合在很多场景中都是有用的。你会在 Rust 代码中看到很多这样的模式:`match` 一个枚举,绑定其中的值到一个变量,接着根据其值执行代码。这在一开始有点复杂,不过一旦习惯了,你会希望所有语言都拥有它!这一直是用户的最爱。
### 匹配是穷尽的
`match` 还有另一方面需要讨论。考虑一下 `plus_one` 函数的这个版本,它有一个 bug 并不能编译:
```rust,ignore,does_not_compile
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/no-listing-10-non-exhaustive-match/src/main.rs:here}}
```
我们没有处理 `None` 的情况,所以这些代码会造成一个 bug。幸运的是,这是一个 Rust 知道如何处理的 bug。如果尝试编译这段代码,会得到这个错误:
```console
{{#include ../listings/ch06-enums-and-pattern-matching/no-listing-10-non-exhaustive-match/output.txt}}
```
Rust 知道我们没有覆盖所有可能的情况甚至知道哪些模式被忘记了!Rust 中的匹配是 **穷尽的**(*exhaustive*):必须穷举到最后的可能性来使代码有效。特别的在这个 `Option` 的例子中,Rust 防止我们忘记明确的处理 `None` 的情况,这让我们免于假设拥有一个实际上为空的值,从而使之前提到的价值亿万的错误不可能发生。
### 通配模式和 `_` 占位符
让我们看一个例子,我们希望对一些特定的值采取特殊操作,而对其他的值采取默认操作。想象我们正在玩一个游戏,如果你掷出骰子的值为 3,角色不会移动,而是会得到一顶新奇的帽子。如果你掷出了 7,你的角色将失去新奇的帽子。对于其他的数值,你的角色会在棋盘上移动相应的格子。这是一个实现了上述逻辑的 `match`,骰子的结果是硬编码而不是一个随机值,其他的逻辑部分使用了没有函数体的函数来表示,实现它们超出了本例的范围:
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/no-listing-15-binding-catchall/src/main.rs:here}}
```
对于前两个分支,匹配模式是字面值 3 和 7,最后一个分支则涵盖了所有其他可能的值,模式是我们命名为 `other` 的一个变量。`other` 分支的代码通过将其传递给 `move_player` 函数来使用这个变量。
即使我们没有列出 `u8` 所有可能的值,这段代码依然能够编译,因为最后一个模式将匹配所有未被特殊列出的值。这种通配模式满足了 `match` 必须被穷尽的要求。请注意,我们必须将通配分支放在最后,因为模式是按顺序匹配的。如果我们在通配分支后添加其他分支,Rust 将会警告我们,因为此后的分支永远不会被匹配到。
Rust 还提供了一个模式,当我们不想使用通配模式获取的值时,请使用 `_` ,这是一个特殊的模式,可以匹配任意值而不绑定到该值。这告诉 Rust 我们不会使用这个值,所以 Rust 也不会警告我们存在未使用的变量。
让我们改变游戏规则,当你掷出的值不是 3 或 7 的时候,你必须再次掷出。这种情况下我们不需要使用这个值,所以我们改动代码使用 `_` 来替代变量 `other` :
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/no-listing-16-underscore-catchall/src/main.rs:here}}
```
这个例子也满足穷举性要求,因为我们在最后一个分支中明确地忽略了其他的值。我们没有忘记处理任何东西。
让我们再次改变游戏规则,如果你掷出 3 或 7 以外的值,你的回合将无事发生。我们可以使用单元值(在[“元组类型”][tuples]一节中提到的空元组)作为 `_` 分支的代码:
```rust
{{#rustdoc_include ../listings/ch06-enums-and-pattern-matching/no-listing-17-underscore-unit/src/main.rs:here}}
```
在这里,我们明确告诉 Rust 我们不会使用与前面模式不匹配的值,并且这种情况下我们不想运行任何代码。
我们将在[第 18 章][ch18-00-patterns]中介绍更多关于模式和匹配的内容。现在,让我们继续讨论 `if let` 语法,这在 `match` 表达式有点啰嗦的情况下很有用。
[tuples]: ch03-02-data-types.html#元组类型
[ch18-00-patterns]: ch18-00-patterns.html