mirror of https://github.com/rust-lang/nomicon
parent
9f20f453b2
commit
1809c4defb
@ -0,0 +1,176 @@
|
||||
% Handling Zero-Sized Types
|
||||
|
||||
It's time. We're going to fight the spectre that is zero-sized types. Safe Rust
|
||||
*never* needs to care about this, but Vec is very intensive on raw pointers and
|
||||
raw allocations, which are exactly the *only* two things that care about
|
||||
zero-sized types. We need to be careful of two things:
|
||||
|
||||
* The raw allocator API has undefined behaviour if you pass in 0 for an
|
||||
allocation size.
|
||||
* raw pointer offsets are no-ops for zero-sized types, which will break our
|
||||
C-style pointer iterator.
|
||||
|
||||
Thankfully we abstracted out pointer-iterators and allocating handling into
|
||||
RawValIter and RawVec respectively. How mysteriously convenient.
|
||||
|
||||
|
||||
|
||||
|
||||
## Allocating Zero-Sized Types
|
||||
|
||||
So if the allocator API doesn't support zero-sized allocations, what on earth
|
||||
do we store as our allocation? Why, `heap::EMPTY` of course! Almost every operation
|
||||
with a ZST is a no-op since ZSTs have exactly one value, and therefore no state needs
|
||||
to be considered to store or load them. This actually extends to `ptr::read` and
|
||||
`ptr::write`: they won't actually look at the pointer at all. As such we *never* need
|
||||
to change the pointer.
|
||||
|
||||
Note however that our previous reliance on running out of memory before overflow is
|
||||
no longer valid with zero-sized types. We must explicitly guard against capacity
|
||||
overflow for zero-sized types.
|
||||
|
||||
Due to our current architecture, all this means is writing 3 guards, one in each
|
||||
method of RawVec.
|
||||
|
||||
```rust,ignore
|
||||
impl<T> RawVec<T> {
|
||||
fn new() -> Self {
|
||||
unsafe {
|
||||
// !0 is usize::MAX. This branch should be stripped at compile time.
|
||||
let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };
|
||||
|
||||
// heap::EMPTY doubles as "unallocated" and "zero-sized allocation"
|
||||
RawVec { ptr: Unique::new(heap::EMPTY as *mut T), cap: cap }
|
||||
}
|
||||
}
|
||||
|
||||
fn grow(&mut self) {
|
||||
unsafe {
|
||||
let elem_size = mem::size_of::<T>();
|
||||
|
||||
// since we set the capacity to usize::MAX when elem_size is
|
||||
// 0, getting to here necessarily means the Vec is overfull.
|
||||
assert!(elem_size != 0, "capacity overflow");
|
||||
|
||||
let align = mem::align_of::<T>();
|
||||
|
||||
let (new_cap, ptr) = if self.cap == 0 {
|
||||
let ptr = heap::allocate(elem_size, align);
|
||||
(1, ptr)
|
||||
} else {
|
||||
let new_cap = 2 * self.cap;
|
||||
let ptr = heap::reallocate(*self.ptr as *mut _,
|
||||
self.cap * elem_size,
|
||||
new_cap * elem_size,
|
||||
align);
|
||||
(new_cap, ptr)
|
||||
};
|
||||
|
||||
// If allocate or reallocate fail, we'll get `null` back
|
||||
if ptr.is_null() { oom() }
|
||||
|
||||
self.ptr = Unique::new(ptr as *mut _);
|
||||
self.cap = new_cap;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Drop for RawVec<T> {
|
||||
fn drop(&mut self) {
|
||||
let elem_size = mem::size_of::<T>();
|
||||
|
||||
// don't free zero-sized allocations, as they were never allocated.
|
||||
if self.cap != 0 && elem_size != 0 {
|
||||
let align = mem::align_of::<T>();
|
||||
|
||||
let num_bytes = elem_size * self.cap;
|
||||
unsafe {
|
||||
heap::deallocate(*self.ptr as *mut _, num_bytes, align);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
That's it. We support pushing and popping zero-sized types now. Our iterators
|
||||
(that aren't provided by slice Deref) are still busted, though.
|
||||
|
||||
|
||||
|
||||
|
||||
## Iterating Zero-Sized Types
|
||||
|
||||
Zero-sized offsets are no-ops. This means that our current design will always
|
||||
initialize `start` and `end` as the same value, and our iterators will yield
|
||||
nothing. The current solution to this is to cast the pointers to integers,
|
||||
increment, and then cast them back:
|
||||
|
||||
```rust,ignore
|
||||
impl<T> RawValIter<T> {
|
||||
unsafe fn new(slice: &[T]) -> Self {
|
||||
RawValIter {
|
||||
start: slice.as_ptr(),
|
||||
end: if mem::size_of::<T>() == 0 {
|
||||
((slice.as_ptr() as usize) + slice.len()) as *const _
|
||||
} else if slice.len() == 0 {
|
||||
slice.as_ptr()
|
||||
} else {
|
||||
slice.as_ptr().offset(slice.len() as isize)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
Now we have a different bug. Instead of our iterators not running at all, our
|
||||
iterators now run *forever*. We need to do the same trick in our iterator impls.
|
||||
Also, our size_hint computation code will divide by 0 for ZSTs. Since we'll
|
||||
basically be treating the two pointers as if they point to bytes, we'll just
|
||||
map size 0 to divide by 1.
|
||||
|
||||
```rust,ignore
|
||||
impl<T> Iterator for RawValIter<T> {
|
||||
type Item = T;
|
||||
fn next(&mut self) -> Option<T> {
|
||||
if self.start == self.end {
|
||||
None
|
||||
} else {
|
||||
unsafe {
|
||||
let result = ptr::read(self.start);
|
||||
self.start = if mem::size_of::<T>() == 0 {
|
||||
(self.start as usize + 1) as *const _
|
||||
} else {
|
||||
self.start.offset(1);
|
||||
}
|
||||
Some(result)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn size_hint(&self) -> (usize, Option<usize>) {
|
||||
let elem_size = mem::size_of::<T>();
|
||||
let len = (self.end as usize - self.start as usize)
|
||||
/ if elem_size == 0 { 1 } else { elem_size };
|
||||
(len, Some(len))
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> DoubleEndedIterator for RawValIter<T> {
|
||||
fn next_back(&mut self) -> Option<T> {
|
||||
if self.start == self.end {
|
||||
None
|
||||
} else {
|
||||
unsafe {
|
||||
self.end = if mem::size_of::<T>() == 0 {
|
||||
(self.end as usize - 1) as *const _
|
||||
} else {
|
||||
self.end.offset(-1);
|
||||
}
|
||||
Some(ptr::read(self.end))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
And that's it. Iteration works!
|
Loading…
Reference in new issue