implement ZST and add update final code

pull/182/head
Clifton King 6 years ago
parent 84179ba915
commit fac31bc0c9

@ -1,15 +1,14 @@
# The Final Code # The Final Code
```rust ```rust
#![feature(ptr_internals)] #![feature(ptr_internals)] // std::ptr::Unique
#![feature(allocator_api)] #![feature(alloc_internals)] // std::alloc::*
#![feature(alloc_layout_extra)]
use std::ptr::{Unique, NonNull, self};
use std::mem; use std::mem;
use std::ops::{Deref, DerefMut}; use std::ops::{Deref, DerefMut};
use std::alloc::{alloc, realloc, Layout, dealloc, rust_oom};
use std::marker::PhantomData; use std::marker::PhantomData;
use std::alloc::{Alloc, GlobalAlloc, Layout, Global, handle_alloc_error}; use std::ptr::{self, Unique};
struct RawVec<T> { struct RawVec<T> {
ptr: Unique<T>, ptr: Unique<T>,
@ -18,11 +17,9 @@ struct RawVec<T> {
impl<T> RawVec<T> { impl<T> RawVec<T> {
fn new() -> Self { fn new() -> Self {
// !0 is usize::MAX. This branch should be stripped at compile time. let cap = if mem::size_of::<T>() == 0 { ::std::usize::MAX } else { 0 };
let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };
// Unique::empty() doubles as "unallocated" and "zero-sized allocation" // Unique::empty() doubles as "unallocated" and "zero-sized allocation"
RawVec { ptr: Unique::empty(), cap: cap } RawVec { ptr: Unique::empty(), cap, }
} }
fn grow(&mut self) { fn grow(&mut self) {
@ -33,28 +30,34 @@ impl<T> RawVec<T> {
// 0, getting to here necessarily means the Vec is overfull. // 0, getting to here necessarily means the Vec is overfull.
assert!(elem_size != 0, "capacity overflow"); assert!(elem_size != 0, "capacity overflow");
let align = mem::align_of::<T>();
let (new_cap, ptr) = if self.cap == 0 { let (new_cap, ptr) = if self.cap == 0 {
let ptr = Global.alloc(Layout::array::<T>(1).unwrap()); let layout = Layout::from_size_align_unchecked(elem_size, align);
let ptr = alloc(layout);
(1, ptr) (1, ptr)
} else { } else {
let new_cap = 2 * self.cap; let new_cap = self.cap * 2;
let c: NonNull<T> = self.ptr.into(); let old_num_bytes = self.cap * elem_size;
let ptr = Global.realloc(c.cast(), assert!(
Layout::array::<T>(self.cap).unwrap(), old_num_bytes <= (::std::isize::MAX as usize) / 2,
Layout::array::<T>(new_cap).unwrap().size()); "Capacity overflow!"
);
let num_new_bytes = old_num_bytes * 2;
let layout = Layout::from_size_align_unchecked(old_num_bytes, align);
let ptr = realloc(self.ptr.as_ptr() as *mut _, layout, num_new_bytes);
(new_cap, ptr) (new_cap, ptr)
}; };
// If allocate or reallocate fail, oom // If allocate or reallocate fail, we'll get `null` back
if ptr.is_err() { if ptr.is_null() {
handle_alloc_error(Layout::from_size_align_unchecked( rust_oom(Layout::from_size_align_unchecked(
new_cap * elem_size, new_cap * elem_size,
mem::align_of::<T>(), align,
)) ));
} }
let ptr = ptr.unwrap();
self.ptr = Unique::new_unchecked(ptr.as_ptr() as *mut _); self.ptr = Unique::new(ptr as *mut _).unwrap();
self.cap = new_cap; self.cap = new_cap;
} }
} }
@ -62,38 +65,47 @@ impl<T> RawVec<T> {
impl<T> Drop for RawVec<T> { impl<T> Drop for RawVec<T> {
fn drop(&mut self) { fn drop(&mut self) {
let elem_size = mem::size_of::<T>(); if self.cap != 0 {
if self.cap != 0 && elem_size != 0 { let elem_size = mem::size_of::<T>();
unsafe {
let c: NonNull<T> = self.ptr.into(); // don't free zero-sized allocations, as they were never allocated.
Global.dealloc(c.cast(), if self.cap != 0 && elem_size != 0 {
Layout::array::<T>(self.cap).unwrap()); let align = mem::align_of::<T>();
let num_bytes = elem_size * self.cap;
unsafe {
let layout = Layout::from_size_align_unchecked(num_bytes, align);
dealloc(self.ptr.as_ptr() as *mut _, layout);
}
} }
} }
} }
} }
pub struct Vec<T> {
pub struct NomVec<T> {
buf: RawVec<T>, buf: RawVec<T>,
len: usize, len: usize,
} }
impl<T> Vec<T> { impl<T> NomVec<T> {
fn ptr(&self) -> *mut T { self.buf.ptr.as_ptr() } fn ptr(&self) -> *mut T {
self.buf.ptr.as_ptr()
}
fn cap(&self) -> usize { self.buf.cap } fn cap(&self) -> usize {
self.buf.cap
}
pub fn new() -> Self { pub fn new() -> Self {
Vec { buf: RawVec::new(), len: 0 } Self { buf: RawVec::new(), len: 0, }
} }
pub fn push(&mut self, elem: T) { pub fn push(&mut self, elem: T) {
if self.len == self.cap() { self.buf.grow(); } if self.len == self.cap() { self.buf.grow(); }
unsafe { unsafe {
ptr::write(self.ptr().offset(self.len as isize), elem); ptr::write(self.ptr().offset(self.len as isize), elem);
} }
// Can't fail, we'll OOM first.
self.len += 1; self.len += 1;
} }
@ -108,15 +120,21 @@ impl<T> Vec<T> {
} }
} }
pub fn len(&self) -> usize {
self.len
}
pub fn insert(&mut self, index: usize, elem: T) { pub fn insert(&mut self, index: usize, elem: T) {
// Note: `<=` because it's valid to insert after everything
// which would be equivalent to push.
assert!(index <= self.len, "index out of bounds"); assert!(index <= self.len, "index out of bounds");
if self.cap() == self.len { self.buf.grow(); } if self.cap() == self.len { self.buf.grow(); }
unsafe { unsafe {
if index < self.len { if index < self.len {
ptr::copy(self.ptr().offset(index as isize), ptr::copy(self.ptr().offset(index as isize),
self.ptr().offset(index as isize + 1), self.ptr().offset(index as isize + 1),
self.len - index); self.len - index
);
} }
ptr::write(self.ptr().offset(index as isize), elem); ptr::write(self.ptr().offset(index as isize), elem);
self.len += 1; self.len += 1;
@ -135,44 +153,38 @@ impl<T> Vec<T> {
} }
} }
pub fn into_iter(self) -> IntoIter<T> { #[allow(dead_code)]
fn into_iter(self) -> IntoIter<T> {
unsafe { unsafe {
// need to use ptr::read to unsafely move the buf out since it's
// not Copy, and Vec implements Drop (so we can't destructure it).
let iter = RawValIter::new(&self); let iter = RawValIter::new(&self);
let buf = ptr::read(&self.buf); let buf = ptr::read(&self.buf);
mem::forget(self); mem::forget(self);
IntoIter { iter, _buf: buf, }
IntoIter {
iter: iter,
_buf: buf,
}
} }
} }
pub fn drain(&mut self) -> Drain<T> { pub fn drain(&mut self) -> Drain<T> {
unsafe { unsafe {
let iter = RawValIter::new(&self); let iter = RawValIter::new(&self);
// this is a mem::forget safety thing. If Drain is forgotten, we just // this is a mem::forget safety thing. If Drain is forgotten, we just
// leak the whole Vec's contents. Also we need to do this *eventually* // leak the whole Vec's contents. Also we need to do this *eventually*
// anyway, so why not do it now? // anyway, so why not do it now?
self.len = 0; self.len = 0;
Drain { iter, vec: PhantomData, }
Drain {
iter: iter,
vec: PhantomData,
}
} }
} }
} }
impl<T> Drop for Vec<T> { impl<T> Drop for NomVec<T> {
fn drop(&mut self) { fn drop(&mut self) {
// deallocation is handled by RawVec
while let Some(_) = self.pop() {} while let Some(_) = self.pop() {}
// allocation is handled by RawVec
} }
} }
impl<T> Deref for Vec<T> { impl<T> Deref for NomVec<T> {
type Target = [T]; type Target = [T];
fn deref(&self) -> &[T] { fn deref(&self) -> &[T] {
unsafe { unsafe {
@ -181,7 +193,7 @@ impl<T> Deref for Vec<T> {
} }
} }
impl<T> DerefMut for Vec<T> { impl<T> DerefMut for NomVec<T> {
fn deref_mut(&mut self) -> &mut [T] { fn deref_mut(&mut self) -> &mut [T] {
unsafe { unsafe {
::std::slice::from_raw_parts_mut(self.ptr(), self.len) ::std::slice::from_raw_parts_mut(self.ptr(), self.len)
@ -191,6 +203,30 @@ impl<T> DerefMut for Vec<T> {
struct IntoIter<T> {
_buf: RawVec<T>,
iter: RawValIter<T>,
}
impl<T> Iterator for IntoIter<T> {
type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
}
impl<T> DoubleEndedIterator for IntoIter<T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
}
impl<T> Drop for IntoIter<T> {
fn drop(&mut self) {
// only need to ensure all our elements are read;
// buffer will clean itself up afterwards.
for _ in &mut self.iter {}
}
}
struct RawValIter<T> { struct RawValIter<T> {
@ -199,12 +235,17 @@ struct RawValIter<T> {
} }
impl<T> RawValIter<T> { impl<T> RawValIter<T> {
// unsafe to construct because it has no associated lifetimes.
// This is necessary to store a RawValIter in the same struct as
// its actual allocation. OK since it's a private implementation
// detail.
unsafe fn new(slice: &[T]) -> Self { unsafe fn new(slice: &[T]) -> Self {
RawValIter { RawValIter {
start: slice.as_ptr(), start: slice.as_ptr(),
end: if mem::size_of::<T>() == 0 { end: if slice.len() == 0 {
((slice.as_ptr() as usize) + slice.len()) as *const _ // if `len = 0`, then this is not actually allocated memory.
} else if slice.len() == 0 { // Need to avoid offsetting because that will give wrong
// information to LLVM via GEP.
slice.as_ptr() slice.as_ptr()
} else { } else {
slice.as_ptr().offset(slice.len() as isize) slice.as_ptr().offset(slice.len() as isize)
@ -232,9 +273,7 @@ impl<T> Iterator for RawValIter<T> {
} }
fn size_hint(&self) -> (usize, Option<usize>) { fn size_hint(&self) -> (usize, Option<usize>) {
let elem_size = mem::size_of::<T>(); let len = (self.end as usize - self.start as usize) / mem::size_of::<T>();
let len = (self.end as usize - self.start as usize)
/ if elem_size == 0 { 1 } else { elem_size };
(len, Some(len)) (len, Some(len))
} }
} }
@ -245,11 +284,7 @@ impl<T> DoubleEndedIterator for RawValIter<T> {
None None
} else { } else {
unsafe { unsafe {
self.end = if mem::size_of::<T>() == 0 { self.end = self.end.offset(-1);
(self.end as usize - 1) as *const _
} else {
self.end.offset(-1)
};
Some(ptr::read(self.end)) Some(ptr::read(self.end))
} }
} }
@ -258,50 +293,133 @@ impl<T> DoubleEndedIterator for RawValIter<T> {
pub struct Drain<'a, T: 'a> {
pub struct IntoIter<T> { // Need to bound the lifetime here, so we do it with `&'a mut Vec<T>`
_buf: RawVec<T>, // we don't actually care about this. Just need it to live. // because that's semantically what we contain. We're "just" calling
// `pop()` and `remove(0)`.
vec: PhantomData<&'a mut NomVec<T>>,
iter: RawValIter<T>, iter: RawValIter<T>,
} }
impl<T> Iterator for IntoIter<T> { impl<'a, T> Iterator for Drain<'a, T> {
type Item = T; type Item = T;
fn next(&mut self) -> Option<T> { self.iter.next() } fn next(&mut self) -> Option<T> { self.iter.next() }
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() } fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
} }
impl<T> DoubleEndedIterator for IntoIter<T> { impl<'a, T> DoubleEndedIterator for Drain<'a, T> {
fn next_back(&mut self) -> Option<T> { self.iter.next_back() } fn next_back(&mut self) -> Option<T> { self.iter.next_back() }
} }
impl<T> Drop for IntoIter<T> { impl<'a, T> Drop for Drain<'a, T> {
fn drop(&mut self) { fn drop(&mut self) {
for _ in &mut *self {} for _ in &mut self.iter {}
} }
} }
#[cfg(test)]
mod tests {
use super::*;
pub struct Drain<'a, T: 'a> { #[test]
vec: PhantomData<&'a mut Vec<T>>, fn vec_push() {
iter: RawValIter<T>, let mut cv = NomVec::new();
} cv.push(2);
assert_eq!(cv.len(), 1);
cv.push(3);
assert_eq!(cv.len(), 2);
}
impl<'a, T> Iterator for Drain<'a, T> { #[test]
type Item = T; fn vec_iter() {
fn next(&mut self) -> Option<T> { self.iter.next() } let mut cv = NomVec::new();
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() } cv.push(2);
} cv.push(3);
let mut accum = 0;
for x in cv.iter() {
accum += x;
}
assert_eq!(accum, 5);
}
impl<'a, T> DoubleEndedIterator for Drain<'a, T> { #[test]
fn next_back(&mut self) -> Option<T> { self.iter.next_back() } fn vec_into_iter() {
} let mut cv = NomVec::new();
cv.push(2);
cv.push(3);
assert_eq!(cv.into_iter().collect::<Vec<i32>>(), vec![2, 3]);
}
impl<'a, T> Drop for Drain<'a, T> { #[test]
fn drop(&mut self) { fn vec_into_double_ended_iter() {
// pre-drain the iter let mut cv = NomVec::new();
for _ in &mut self.iter {} cv.push(2);
cv.push(3);
assert_eq!(*cv.iter().next_back().unwrap(), 3);
}
#[test]
fn vec_pop() {
let mut cv = NomVec::new();
cv.push(2);
assert_eq!(cv.len(), 1);
cv.pop();
assert_eq!(cv.len(), 0);
assert!(cv.pop() == None);
}
#[test]
fn vec_insert() {
let mut cv: NomVec<i32> = NomVec::new();
cv.insert(0, 2); // test insert at end
cv.insert(0, 1); // test insert at beginning
assert_eq!(cv.pop().unwrap(), 2);
}
#[test]
fn vec_remove() {
let mut cv = NomVec::new();
cv.push(2);
assert_eq!(cv.remove(0), 2);
assert_eq!(cv.len(), 0);
}
#[test]
#[should_panic(expected = "index out of bounds")]
fn vec_cant_remove() {
let mut cv: NomVec<i32> = NomVec::new();
cv.remove(0);
}
#[test]
fn vec_drain() {
let mut cv = NomVec::new();
cv.push(1);
cv.push(2);
cv.push(3);
assert_eq!(cv.len(), 3);
{
let mut drain = cv.drain();
assert_eq!(drain.next().unwrap(), 1);
assert_eq!(drain.next_back().unwrap(), 3);
}
assert_eq!(cv.len(), 0);
}
#[derive(PartialEq, Debug)]
struct ZST;
#[test]
fn vec_zst() {
let mut cv = NomVec::new();
cv.push(ZST {});
cv.push(ZST {});
assert_eq!(cv.len(), 2);
assert_eq!(cv.pop().unwrap(), ZST {});
assert_eq!(cv.pop().unwrap(), ZST {});
assert_eq!(cv.pop(), None);
} }
} }
@ -316,7 +434,7 @@ impl<'a, T> Drop for Drain<'a, T> {
# mod tests { # mod tests {
# use super::*; # use super::*;
# pub fn create_push_pop() { # pub fn create_push_pop() {
# let mut v = Vec::new(); # let mut v = NomVec::new();
# v.push(1); # v.push(1);
# assert_eq!(1, v.len()); # assert_eq!(1, v.len());
# assert_eq!(1, v[0]); # assert_eq!(1, v[0]);
@ -334,7 +452,7 @@ impl<'a, T> Drop for Drain<'a, T> {
# } # }
# #
# pub fn iter_test() { # pub fn iter_test() {
# let mut v = Vec::new(); # let mut v = NomVec::new();
# for i in 0..10 { # for i in 0..10 {
# v.push(Box::new(i)) # v.push(Box::new(i))
# } # }
@ -347,7 +465,7 @@ impl<'a, T> Drop for Drain<'a, T> {
# } # }
# #
# pub fn test_drain() { # pub fn test_drain() {
# let mut v = Vec::new(); # let mut v = NomVec::new();
# for i in 0..10 { # for i in 0..10 {
# v.push(Box::new(i)) # v.push(Box::new(i))
# } # }
@ -364,7 +482,7 @@ impl<'a, T> Drop for Drain<'a, T> {
# } # }
# #
# pub fn test_zst() { # pub fn test_zst() {
# let mut v = Vec::new(); # let mut v = NomVec::new();
# for _i in 0..10 { # for _i in 0..10 {
# v.push(()) # v.push(())
# } # }

@ -35,13 +35,12 @@ method of RawVec.
```rust,ignore ```rust,ignore
impl<T> RawVec<T> { impl<T> RawVec<T> {
fn new() -> Self { fn new() -> Self {
// !0 is usize::MAX. This branch should be stripped at compile time. let cap = if mem::size_of::<T>() == 0 { ::std::usize::MAX } else { 0 };
let cap = if mem::size_of::<T>() == 0 { !0 } else { 0 };
// Unique::empty() doubles as "unallocated" and "zero-sized allocation" // Unique::empty() doubles as "unallocated" and "zero-sized allocation"
RawVec { ptr: Unique::empty(), cap: cap } RawVec { ptr: Unique::empty(), cap, }
} }
// unchanged from Vec
fn grow(&mut self) { fn grow(&mut self) {
unsafe { unsafe {
let elem_size = mem::size_of::<T>(); let elem_size = mem::size_of::<T>();
@ -53,21 +52,31 @@ impl<T> RawVec<T> {
let align = mem::align_of::<T>(); let align = mem::align_of::<T>();
let (new_cap, ptr) = if self.cap == 0 { let (new_cap, ptr) = if self.cap == 0 {
let ptr = heap::allocate(elem_size, align); let layout = Layout::from_size_align_unchecked(elem_size, align);
let ptr = alloc(layout);
(1, ptr) (1, ptr)
} else { } else {
let new_cap = 2 * self.cap; let new_cap = self.cap * 2;
let ptr = heap::reallocate(self.ptr.as_ptr() as *mut _, let old_num_bytes = self.cap * elem_size;
self.cap * elem_size, assert!(
new_cap * elem_size, old_num_bytes <= (::std::isize::MAX as usize) / 2,
align); "Capacity overflow!"
);
let num_new_bytes = old_num_bytes * 2;
let layout = Layout::from_size_align_unchecked(old_num_bytes, align);
let ptr = realloc(self.ptr.as_ptr() as *mut _, layout, num_new_bytes);
(new_cap, ptr) (new_cap, ptr)
}; };
// If allocate or reallocate fail, we'll get `null` back // If allocate or reallocate fail, we'll get `null` back
if ptr.is_null() { oom() } if ptr.is_null() {
rust_oom(Layout::from_size_align_unchecked(
new_cap * elem_size,
align,
));
}
self.ptr = Unique::new(ptr as *mut _); self.ptr = Unique::new(ptr as *mut _).unwrap();
self.cap = new_cap; self.cap = new_cap;
} }
} }
@ -75,15 +84,17 @@ impl<T> RawVec<T> {
impl<T> Drop for RawVec<T> { impl<T> Drop for RawVec<T> {
fn drop(&mut self) { fn drop(&mut self) {
let elem_size = mem::size_of::<T>(); if self.cap != 0 {
let elem_size = mem::size_of::<T>();
// don't free zero-sized allocations, as they were never allocated.
if self.cap != 0 && elem_size != 0 {
let align = mem::align_of::<T>();
let num_bytes = elem_size * self.cap; // don't free zero-sized allocations, as they were never allocated.
unsafe { if self.cap != 0 && elem_size != 0 {
heap::deallocate(self.ptr.as_ptr() as *mut _, num_bytes, align); let align = mem::align_of::<T>();
let num_bytes = elem_size * self.cap;
unsafe {
let layout = Layout::from_size_align_unchecked(num_bytes, align);
dealloc(self.ptr.as_ptr() as *mut _, layout);
}
} }
} }
} }

Loading…
Cancel
Save