新增章节:[不错的unsafe队列-数据布局]

pull/574/head
sunface 3 years ago
parent bd9e56f4cb
commit 4b29ed33ec

@ -213,6 +213,9 @@
- [基本操作的对称镜像](too-many-lists/deque/symmetric.md) - [基本操作的对称镜像](too-many-lists/deque/symmetric.md)
- [迭代器](too-many-lists/deque/iterator.md) - [迭代器](too-many-lists/deque/iterator.md)
- [最终代码](too-many-lists/deque/final-code.md) - [最终代码](too-many-lists/deque/final-code.md)
- [不错的unsafe队列](too-may-lists/unsafe-queue/intro.md)
- [数据布局](too-may-lists/unsafe-queue/layout.md)
- [Rust 性能优化 todo](profiling/intro.md) - [Rust 性能优化 todo](profiling/intro.md)
- [深入内存 todo](profiling/memory/intro.md) - [深入内存 todo](profiling/memory/intro.md)

@ -0,0 +1,20 @@
# 不错的unsafe队列
在之前章节中,基于内部可变性和引用计数的双向链表有些失控了,原因在于 `Rc``RefCell` 对于简单的任务而言,它们是非常称职的,但是对于复杂的任务,它们可能会变得相当笨拙,特别是当我们试图隐藏一些细节时。
总之,一定有更好的办法!下面来看看该如何使用裸指针和 unsafe 代码实现一个单向链表。
> 大家可能想等着看我犯错误unsafe 嘛,不犯错误不可能的,但是呢,俺偏就不犯错误:)
国际惯例,添加第五个链表所需的文件 `fifth.rs`:
```rust
// in lib.rs
pub mod first;
pub mod second;
pub mod third;
pub mod fourth;
pub mod fifth;
```
虽然我们依然会从零开始撸代码,但是 `fifth.rs` 的代码会跟 `second.rs` 存在一定的重叠,因为对于链表而言,队列其实就是栈的增强。

@ -0,0 +1,374 @@
# 数据布局
那么单向链表的队列长什么样?对于栈来说,我们向一端推入( push )元素,然后再从同一端弹出( pop )。对于栈和队列而言,唯一的区别在于队列从末端弹出。
栈的实现类似于下图:
```shell
input list:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)
stack push X:
[Some(ptr)] -> (X, Some(ptr)) -> (A, Some(ptr)) -> (B, None)
stack pop:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)
```
由于队列是首端进,末端出,因此我们需要决定将 `push``pop` 中的哪个放到末端去操作,如果将 `push` 放在末端操作:
```shell
input list:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)
flipped push X:
[Some(ptr)] -> (A, Some(ptr)) -> (B, Some(ptr)) -> (X, None)
```
而如果将 `pop` 放在末端:
```shell
input list:
[Some(ptr)] -> (A, Some(ptr)) -> (B, Some(ptr)) -> (X, None)
flipped pop:
[Some(ptr)] -> (A, Some(ptr)) -> (B, None)
```
但是这样实现有一个很糟糕的地方:两个操作都需要遍历整个链表后才能完成。队列要求 `push``pop` 操作需要高效,但是遍历整个链表才能完成的操作怎么看都谈不上高效!
其中一个解决办法就是保存一个指针指向末端:
```rust
use std::mem;
pub struct List<T> {
head: Link<T>,
tail: Link<T>, // NEW!
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
impl<T> List<T> {
pub fn new() -> Self {
List { head: None, tail: None }
}
pub fn push(&mut self, elem: T) {
let new_tail = Box::new(Node {
elem: elem,
// 在尾端推入一个新节点时,新节点的下一个节点永远是 None
next: None,
});
// 让 tail 指向新的节点,并返回之前的 old tail
let old_tail = mem::replace(&mut self.tail, Some(new_tail));
match old_tail {
Some(mut old_tail) => {
// 若 old tail 存在,则让该节点指向新的节点
old_tail.next = Some(new_tail);
}
None => {
// 否则,将 head 指向新的节点
self.head = Some(new_tail);
}
}
}
}
```
在之前的各种链表锤炼下,我们对于相关代码应该相当熟悉了,因此可以适当提提速 - 在写的过程中,事实上我碰到了很多错误,这些错误就不再一一列举。
但是如果你担心不再能看到错误,那就纯属多余了:
```shell
> cargo build
error[E0382]: use of moved value: `new_tail`
--> src/fifth.rs:38:38
|
26 | let new_tail = Box::new(Node {
| -------- move occurs because `new_tail` has type `std::boxed::Box<fifth::Node<T>>`, which does not implement the `Copy` trait
...
33 | let old_tail = mem::replace(&mut self.tail, Some(new_tail));
| -------- value moved here
...
38 | old_tail.next = Some(new_tail);
| ^^^^^^^^ value used here after move
```
新鲜出炉的错误,接好!`Box` 并没有实现 `Copy` 特征,因此我们不能在两个地方进行赋值。好在,可以使用没有所有权的引用类型:
```rust
pub struct List<T> {
head: Link<T>,
tail: Option<&mut Node<T>>, // NEW!
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
impl<T> List<T> {
pub fn new() -> Self {
List { head: None, tail: None }
}
pub fn push(&mut self, elem: T) {
let new_tail = Box::new(Node {
elem: elem,
next: None,
});
let new_tail = match self.tail.take() {
Some(old_tail) => {
old_tail.next = Some(new_tail);
old_tail.next.as_deref_mut()
}
None => {
self.head = Some(new_tail);
self.head.as_deref_mut()
}
};
self.tail = new_tail;
}
}
```
```shell
> cargo build
error[E0106]: missing lifetime specifier
--> src/fifth.rs:3:18
|
3 | tail: Option<&mut Node<T>>, // NEW!
| ^ expected lifetime parameter
```
好吧,结构体中的引用类型需要显式的标注生命周期,先加一个 `'a` 吧:
```rust
pub struct List<'a, T> {
head: Link<T>,
tail: Option<&'a mut Node<T>>, // NEW!
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
impl<'a, T> List<'a, T> {
pub fn new() -> Self {
List { head: None, tail: None }
}
pub fn push(&mut self, elem: T) {
let new_tail = Box::new(Node {
elem: elem,
next: None,
});
let new_tail = match self.tail.take() {
Some(old_tail) => {
old_tail.next = Some(new_tail);
old_tail.next.as_deref_mut()
}
None => {
self.head = Some(new_tail);
self.head.as_deref_mut()
}
};
self.tail = new_tail;
}
}
```
```shell
cargo build
error[E0495]: cannot infer an appropriate lifetime for autoref due to conflicting requirements
--> src/fifth.rs:35:27
|
35 | self.head.as_deref_mut()
| ^^^^^^^^^^^^
|
note: first, the lifetime cannot outlive the anonymous lifetime #1 defined on the method body at 18:5...
--> src/fifth.rs:18:5
|
18 | / pub fn push(&mut self, elem: T) {
19 | | let new_tail = Box::new(Node {
20 | | elem: elem,
21 | | // When you push onto the tail, your next is always None
... |
39 | | self.tail = new_tail;
40 | | }
| |_____^
note: ...so that reference does not outlive borrowed content
--> src/fifth.rs:35:17
|
35 | self.head.as_deref_mut()
| ^^^^^^^^^
note: but, the lifetime must be valid for the lifetime 'a as defined on the impl at 13:6...
--> src/fifth.rs:13:6
|
13 | impl<'a, T> List<'a, T> {
| ^^
= note: ...so that the expression is assignable:
expected std::option::Option<&'a mut fifth::Node<T>>
found std::option::Option<&mut fifth::Node<T>>
```
好长... Rust 为啥这么难... 但是,这里有一句重点:
> the lifetime must be valid for the lifetime 'a as defined on the impl
意思是说生命周期至少要和 `'a` 一样长,是不是因为编译器为 `self` 推导的生命周期不够长呢?我们试着来手动标注下:
```rust
pub fn push(&'a mut self, elem: T) {
```
当当当当,成功通过编译:
```shell
cargo build
warning: field is never used: `elem`
--> src/fifth.rs:9:5
|
9 | elem: T,
| ^^^^^^^
|
= note: #[warn(dead_code)] on by default
```
这个错误可以称之为错误之王,但是我们依然成功的解决了它,太棒了!再来实现下 `pop`:
```rust
pub fn pop(&'a mut self) -> Option<T> {
self.head.take().map(|head| {
let head = *head;
self.head = head.next;
if self.head.is_none() {
self.tail = None;
}
head.elem
})
}
```
看起来不错,写几个测试用例溜一溜:
```rust
mod test {
use super::List;
#[test]
fn basics() {
let mut list = List::new();
// Check empty list behaves right
assert_eq!(list.pop(), None);
// Populate list
list.push(1);
list.push(2);
list.push(3);
// Check normal removal
assert_eq!(list.pop(), Some(1));
assert_eq!(list.pop(), Some(2));
// Push some more just to make sure nothing's corrupted
list.push(4);
list.push(5);
// Check normal removal
assert_eq!(list.pop(), Some(3));
assert_eq!(list.pop(), Some(4));
// Check exhaustion
assert_eq!(list.pop(), Some(5));
assert_eq!(list.pop(), None);
}
}
```
```shell
cargo test
error[E0499]: cannot borrow `list` as mutable more than once at a time
--> src/fifth.rs:68:9
|
65 | assert_eq!(list.pop(), None);
| ---- first mutable borrow occurs here
...
68 | list.push(1);
| ^^^^
| |
| second mutable borrow occurs here
| first borrow later used here
error[E0499]: cannot borrow `list` as mutable more than once at a time
--> src/fifth.rs:69:9
|
65 | assert_eq!(list.pop(), None);
| ---- first mutable borrow occurs here
...
69 | list.push(2);
| ^^^^
| |
| second mutable borrow occurs here
| first borrow later used here
error[E0499]: cannot borrow `list` as mutable more than once at a time
--> src/fifth.rs:70:9
|
65 | assert_eq!(list.pop(), None);
| ---- first mutable borrow occurs here
...
70 | list.push(3);
| ^^^^
| |
| second mutable borrow occurs here
| first borrow later used here
....
** WAY MORE LINES OF ERRORS **
....
error: aborting due to 11 previous errors
```
🙀🙀🙀,震惊!但编译器真的没错,因为都是我们刚才那个标记惹的祸。
我们为 `self` 标记了 `'a`,意味着在 `'a` 结束前,无法再去使用 `self`,大家可以自己推断下 `'a` 的生命周期是多长。
那么该怎么办?回到老路 `RefCell` 上?显然不可能,那只能祭出大杀器:裸指针。
> 事实上,上文的问题主要是自引用引起的,感兴趣的同学可以查看[这里](https://course.rs/advance/circle-self-ref/intro.html)深入阅读。
```rust
pub struct List<T> {
head: Link<T>,
tail: *mut Node<T>, // DANGER DANGER
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
```
如上所示,当使用裸指针后, `head``tail` 就不会形成自引用的问题,也不再违反 Rust 严苛的借用规则。
> 注意!当前的实现依然是有严重问题的,在后面我们会修复
果然,编程的最高境界就是回归本质:使用 C 语言的东东。
Loading…
Cancel
Save