新增章节 [Cookbook - 线程]

pull/737/head
sunface 3 years ago
parent cf03ac41b6
commit 93e73e6866

@ -270,9 +270,12 @@
- [命令行]()
- [参数解析](cookbook/cmd/parsing.md)
- [终端输出格式化](cookbook/cmd/ansi.md)
- [压缩](cookbook/compression/intro.md)
- [压缩]()
- [使用.tar包](cookbook/compression/tar.md)
- [配置文件解析 todo](cookbook/config.md)
- [并发]()
- [线程](cookbook/cocurrency/threads.md)
<!-- - [配置文件解析 todo](cookbook/config.md)
- [编解码 todo](cookbook/encoding/intro.md)
- [JSON](cookbook/encoding/json.md)
- [CSV](cookbook/encoding/csv.md)
@ -291,7 +294,7 @@
- [时间日期](cookbook/date.md)
- [开发调试 todo](cookbook/dev/intro.md)
- [日志](cookbook/dev/logs.md)
- [性能分析](cookbook/dev/profile.md)
- [性能分析](cookbook/dev/profile.md) -->
<!--
- [Rust区块链入门]()

@ -0,0 +1,336 @@
# 线程
### 生成一个临时性的线程
下面例子用到了 [crossbeam](cookbook/cocurrency/intro.md) 包,它提供了非常实用的、用于并发和并行编程的数据结构和函数。
[Scope::spawn](https://docs.rs/crossbeam/*/crossbeam/thread/struct.Scope.html#method.spawn) 会生成一个被限定了作用域的线程,该线程最大的特点就是:它会在传给 [crossbeam::scope](https://docs.rs/crossbeam/0.8.1/crossbeam/fn.scope.html) 的闭包函数返回前先行结束。得益于这个特点,子线程的创建使用就像是本地闭包函数调用,因此生成的线程内部可以使用外部环境中的变量!
```rust,editable
fn main() {
let arr = &[1, 25, -4, 10];
let max = find_max(arr);
assert_eq!(max, Some(25));
}
// 将数组分成两个部分,并使用新的线程对它们进行处理
fn find_max(arr: &[i32]) -> Option<i32> {
const THRESHOLD: usize = 2;
if arr.len() <= THRESHOLD {
return arr.iter().cloned().max();
}
let mid = arr.len() / 2;
let (left, right) = arr.split_at(mid);
crossbeam::scope(|s| {
let thread_l = s.spawn(|_| find_max(left));
let thread_r = s.spawn(|_| find_max(right));
let max_l = thread_l.join().unwrap()?;
let max_r = thread_r.join().unwrap()?;
Some(max_l.max(max_r))
}).unwrap()
}
```
### 创建并行流水线
下面我们使用 [crossbeam](https://docs.rs/crossbeam/latest/crossbeam/) 和 [crossbeam-channel](https://docs.rs/crossbeam-channel/*/crossbeam_channel/index.html) 来创建一个并行流水线:流水线的两端分别是数据源和数据下沉( sink ),在流水线中间,有两个工作线程会从源头接收数据,对数据进行并行处理,最后将数据下沉。
- 消息通道( channel )是 [crossbeam_channel::bounded](https://docs.rs/crossbeam-channel/0.5.4/crossbeam_channel/fn.bounded.html),它只能缓存一条消息。当缓存满后,发送者继续调用 [crossbeam_channel::Sender::send] 发送消息时会阻塞,直到一个工作线程( 消费者 ) 拿走这条消息
- 消费者获取消息时先到先得的策略,因此两个工作线程只有一个能取到消息,保证消息不会被重复消费、处理
- 通过迭代器 [crossbeam_channel::Receiver::iter](https://docs.rs/crossbeam-channel/*/crossbeam_channel/struct.Receiver.html#method.iter) 读取消息会阻塞当前线程,直到新消息的到来或 channel 关闭
- channel 只有在所有的发送者或消费者关闭后,才能被关闭。而其中一个消费者 `rcv2` 处于阻塞读取状态,无比被关闭,因此我们必须要关闭所有发送者: `drop(snd1);` `drop(snd2)` ,这样 channel 关闭后,主线程的 `rcv2` 才能从阻塞状态退出,最后整个程序结束。大家还是迷惑的话,可以看看这篇[文章](https://course.rs/practice/pitfalls/main-with-channel-blocked.html)。
```rust,editable
extern crate crossbeam;
extern crate crossbeam_channel;
use std::thread;
use std::time::Duration;
use crossbeam_channel::bounded;
fn main() {
let (snd1, rcv1) = bounded(1);
let (snd2, rcv2) = bounded(1);
let n_msgs = 4;
let n_workers = 2;
crossbeam::scope(|s| {
// 生产者线程
s.spawn(|_| {
for i in 0..n_msgs {
snd1.send(i).unwrap();
println!("Source sent {}", i);
}
// 关闭其中一个发送者 snd1
// 该关闭操作对于结束最后的循环是必须的
drop(snd1);
});
// 通过两个线程并行处理
for _ in 0..n_workers {
// 从数据源接收数据,然后发送到下沉端
let (sendr, recvr) = (snd2.clone(), rcv1.clone());
// 生成单独的工作线程
s.spawn(move |_| {
thread::sleep(Duration::from_millis(500));
// 等待通道的关闭
for msg in recvr.iter() {
println!("Worker {:?} received {}.",
thread::current().id(), msg);
sendr.send(msg * 2).unwrap();
}
});
}
// 关闭通道,如果不关闭,下沉端将永远无法结束循环
drop(snd2);
// 下沉端
for msg in rcv2.iter() {
println!("Sink received {}", msg);
}
}).unwrap();
}
```
### 线程间传递数据
下面我们来看看 [crossbeam-channel](https://docs.rs/crossbeam-channel/*/crossbeam_channel/index.html) 的单生产者单消费者( SPSC ) 使用场景。
```rust,editable
use std::{thread, time};
use crossbeam_channel::unbounded;
fn main() {
// unbounded 意味着 channel 可以存储任意多的消息
let (snd, rcv) = unbounded();
let n_msgs = 5;
crossbeam::scope(|s| {
s.spawn(|_| {
for i in 0..n_msgs {
snd.send(i).unwrap();
thread::sleep(time::Duration::from_millis(100));
}
});
}).unwrap();
for _ in 0..n_msgs {
let msg = rcv.recv().unwrap();
println!("Received {}", msg);
}
}
```
### 维护全局可变的状态
[lazy_static]() 会创建一个全局的静态引用( static ref ),该引用使用了 `Mutex` 以支持可变性,因此我们可以在代码中对其进行修改。`Mutex` 能保证该全局状态同时只能被一个线程所访问。
```rust,editable
use error_chain::error_chain;
use lazy_static::lazy_static;
use std::sync::Mutex;
error_chain!{ }
lazy_static! {
static ref FRUIT: Mutex<Vec<String>> = Mutex::new(Vec::new());
}
fn insert(fruit: &str) -> Result<()> {
let mut db = FRUIT.lock().map_err(|_| "Failed to acquire MutexGuard")?;
db.push(fruit.to_string());
Ok(())
}
fn main() -> Result<()> {
insert("apple")?;
insert("orange")?;
insert("peach")?;
{
let db = FRUIT.lock().map_err(|_| "Failed to acquire MutexGuard")?;
db.iter().enumerate().for_each(|(i, item)| println!("{}: {}", i, item));
}
insert("grape")?;
Ok(())
}
```
### 并行计算 iso 文件的 SHA256
下面的示例将为当前目录中的每一个 .iso 文件都计算一个 SHA256 sum。其中线程池中会初始化和 CPU 核心数一致的线程数,其中核心数是通过 [num_cpus::get](https://docs.rs/num_cpus/*/num_cpus/fn.get.html) 函数获取。
`Walkdir::new` 可以遍历当前的目录,然后调用 `execute` 来执行读操作和 SHA256 哈希计算。
```rust,editable
use walkdir::WalkDir;
use std::fs::File;
use std::io::{BufReader, Read, Error};
use std::path::Path;
use threadpool::ThreadPool;
use std::sync::mpsc::channel;
use ring::digest::{Context, Digest, SHA256};
// Verify the iso extension
fn is_iso(entry: &Path) -> bool {
match entry.extension() {
Some(e) if e.to_string_lossy().to_lowercase() == "iso" => true,
_ => false,
}
}
fn compute_digest<P: AsRef<Path>>(filepath: P) -> Result<(Digest, P), Error> {
let mut buf_reader = BufReader::new(File::open(&filepath)?);
let mut context = Context::new(&SHA256);
let mut buffer = [0; 1024];
loop {
let count = buf_reader.read(&mut buffer)?;
if count == 0 {
break;
}
context.update(&buffer[..count]);
}
Ok((context.finish(), filepath))
}
fn main() -> Result<(), Error> {
let pool = ThreadPool::new(num_cpus::get());
let (tx, rx) = channel();
for entry in WalkDir::new("/home/user/Downloads")
.follow_links(true)
.into_iter()
.filter_map(|e| e.ok())
.filter(|e| !e.path().is_dir() && is_iso(e.path())) {
let path = entry.path().to_owned();
let tx = tx.clone();
pool.execute(move || {
let digest = compute_digest(path);
tx.send(digest).expect("Could not send data!");
});
}
drop(tx);
for t in rx.iter() {
let (sha, path) = t?;
println!("{:?} {:?}", sha, path);
}
Ok(())
}
```
### 使用线程池来绘制分形
下面例子中将基于 [Julia Set]() 来绘制一个分形图片,其中使用到了线程池来做分布式计算。
<img src="https://cloud.githubusercontent.com/assets/221000/26546700/9be34e80-446b-11e7-81dc-dd9871614ea1.png" />
```rust,edtiable
# use error_chain::error_chain;
use std::sync::mpsc::{channel, RecvError};
use threadpool::ThreadPool;
use num::complex::Complex;
use image::{ImageBuffer, Pixel, Rgb};
#
# error_chain! {
# foreign_links {
# MpscRecv(RecvError);
# Io(std::io::Error);
# }
# }
#
# // Function converting intensity values to RGB
# // Based on http://www.efg2.com/Lab/ScienceAndEngineering/Spectra.htm
# fn wavelength_to_rgb(wavelength: u32) -> Rgb<u8> {
# let wave = wavelength as f32;
#
# let (r, g, b) = match wavelength {
# 380..=439 => ((440. - wave) / (440. - 380.), 0.0, 1.0),
# 440..=489 => (0.0, (wave - 440.) / (490. - 440.), 1.0),
# 490..=509 => (0.0, 1.0, (510. - wave) / (510. - 490.)),
# 510..=579 => ((wave - 510.) / (580. - 510.), 1.0, 0.0),
# 580..=644 => (1.0, (645. - wave) / (645. - 580.), 0.0),
# 645..=780 => (1.0, 0.0, 0.0),
# _ => (0.0, 0.0, 0.0),
# };
#
# let factor = match wavelength {
# 380..=419 => 0.3 + 0.7 * (wave - 380.) / (420. - 380.),
# 701..=780 => 0.3 + 0.7 * (780. - wave) / (780. - 700.),
# _ => 1.0,
# };
#
# let (r, g, b) = (normalize(r, factor), normalize(g, factor), normalize(b, factor));
# Rgb::from_channels(r, g, b, 0)
# }
#
# // Maps Julia set distance estimation to intensity values
# fn julia(c: Complex<f32>, x: u32, y: u32, width: u32, height: u32, max_iter: u32) -> u32 {
# let width = width as f32;
# let height = height as f32;
#
# let mut z = Complex {
# // scale and translate the point to image coordinates
# re: 3.0 * (x as f32 - 0.5 * width) / width,
# im: 2.0 * (y as f32 - 0.5 * height) / height,
# };
#
# let mut i = 0;
# for t in 0..max_iter {
# if z.norm() >= 2.0 {
# break;
# }
# z = z * z + c;
# i = t;
# }
# i
# }
#
# // Normalizes color intensity values within RGB range
# fn normalize(color: f32, factor: f32) -> u8 {
# ((color * factor).powf(0.8) * 255.) as u8
# }
fn main() -> Result<()> {
let (width, height) = (1920, 1080);
// 为指定宽高的输出图片分配内存
let mut img = ImageBuffer::new(width, height);
let iterations = 300;
let c = Complex::new(-0.8, 0.156);
let pool = ThreadPool::new(num_cpus::get());
let (tx, rx) = channel();
for y in 0..height {
let tx = tx.clone();
// execute 将每个像素作为单独的作业接收
pool.execute(move || for x in 0..width {
let i = julia(c, x, y, width, height, iterations);
let pixel = wavelength_to_rgb(380 + i * 400 / iterations);
tx.send((x, y, pixel)).expect("Could not send data!");
});
}
for _ in 0..(width * height) {
let (x, y, pixel) = rx.recv()?;
// 使用数据来设置像素的颜色
img.put_pixel(x, y, pixel);
}
// 输出图片内容到指定文件中
let _ = img.save("output.png")?;
Ok(())
}
```

@ -1,3 +0,0 @@
## 压缩
我们会对常用的压缩方法进行介绍,例如 `tar`, `gzip`, `lz4` 等。
Loading…
Cancel
Save