|
|
@ -1,5 +1,5 @@
|
|
|
|
# 可恢复的错误Result
|
|
|
|
# 可恢复的错误Result
|
|
|
|
还记得上一节中,提到的关于文件读取的思考题吧?当时我们解决了读取中如果遇到不可恢复错误的问题,现在来看看,读取过程中,正常返回和遇到可以恢复的错误时该如何处理。
|
|
|
|
还记得上一节中,提到的关于文件读取的思考题吧?当时我们解决了读取文件时遇到不可恢复错误该怎么处理的问题,现在来看看,读取过程中,正常返回和遇到可以恢复的错误时该如何处理。
|
|
|
|
|
|
|
|
|
|
|
|
假设,我们有一台消息服务器,每个用户都通过 websocket 连接到该服务器来接收和发送消息,该过程就涉及到 socket 文件的读写,那么此时,如果一个用户的读写发生了错误,显然不能直接panic,否则服务器会直接崩溃,所有用户都会断开连接,因此我们需要一种更温和的错误处理方式:`Result<T,E>`。
|
|
|
|
假设,我们有一台消息服务器,每个用户都通过 websocket 连接到该服务器来接收和发送消息,该过程就涉及到 socket 文件的读写,那么此时,如果一个用户的读写发生了错误,显然不能直接panic,否则服务器会直接崩溃,所有用户都会断开连接,因此我们需要一种更温和的错误处理方式:`Result<T,E>`。
|
|
|
|
|
|
|
|
|
|
|
@ -20,7 +20,7 @@ fn main() {
|
|
|
|
```
|
|
|
|
```
|
|
|
|
以上 `File::open` 返回一个 `Result` 类型,那么问题来了:
|
|
|
|
以上 `File::open` 返回一个 `Result` 类型,那么问题来了:
|
|
|
|
|
|
|
|
|
|
|
|
> #### 如何获取变量类型或者函数的返回类型
|
|
|
|
> #### 如何获知变量类型或者函数的返回类型
|
|
|
|
>
|
|
|
|
>
|
|
|
|
> 有几种常用的方式,此处更推荐第二种方法:
|
|
|
|
> 有几种常用的方式,此处更推荐第二种方法:
|
|
|
|
> - 第一种是查询标准库或者三方库文档,搜索 `File`,然后找到它的 `open` 方法
|
|
|
|
> - 第一种是查询标准库或者三方库文档,搜索 `File`,然后找到它的 `open` 方法
|
|
|
@ -46,7 +46,7 @@ error[E0308]: mismatched types
|
|
|
|
|
|
|
|
|
|
|
|
别慌,其实很简单,首先 `Result` 本身是定义在 `std::result` 中的,但是因为 `Result` 很常用,所以就被包含在了[`prelude`](../../appendix/prelude.md)中(将常用的东东提前引入到当前作用域内),因此无需手动引入 `std::result::Result`,那么返回类型可以简化为 `Result<std::fs::File,std::io::Error>`,你看看是不是很像标准的 `Result<T,E>` 枚举定义?只不过 `T` 被替换成了具体的类型 `std::fs::File`,是一个文件句柄类型,`E` 被替换成 `std::io::Error`,是一个 IO 错误类型.
|
|
|
|
别慌,其实很简单,首先 `Result` 本身是定义在 `std::result` 中的,但是因为 `Result` 很常用,所以就被包含在了[`prelude`](../../appendix/prelude.md)中(将常用的东东提前引入到当前作用域内),因此无需手动引入 `std::result::Result`,那么返回类型可以简化为 `Result<std::fs::File,std::io::Error>`,你看看是不是很像标准的 `Result<T,E>` 枚举定义?只不过 `T` 被替换成了具体的类型 `std::fs::File`,是一个文件句柄类型,`E` 被替换成 `std::io::Error`,是一个 IO 错误类型.
|
|
|
|
|
|
|
|
|
|
|
|
这个返回值类型说明 `File::open` 调用如果成功则返回一个可以进行读写的文件句柄,如果失败,则返回一个 IO 错误:文件不存在或者没有访问文件的权限等。总之 `File::open` 需要一个方式告知调用者是成功还是失败,并同时返回具体的文件句柄(成功)或错误信息(失败),这些信息通可以通过 `Result` 枚举提供:
|
|
|
|
这个返回值类型说明 `File::open` 调用如果成功则返回一个可以进行读写的文件句柄,如果失败,则返回一个 IO 错误:文件不存在或者没有访问文件的权限等。总之 `File::open` 需要一个方式告知调用者是成功还是失败,并同时返回具体的文件句柄(成功)或错误信息(失败),万幸的是,这些信息通可以通过 `Result` 枚举提供:
|
|
|
|
```rust
|
|
|
|
```rust
|
|
|
|
use std::fs::File;
|
|
|
|
use std::fs::File;
|
|
|
|
|
|
|
|
|
|
|
@ -200,11 +200,11 @@ let mut f = match f {
|
|
|
|
```
|
|
|
|
```
|
|
|
|
如果结果是 `Ok(T)`,则把 `T` 赋值给 `f`,如果结果是 `Err(E)`,则返回该错误,所以 `?` 特别适合用来传播错误。
|
|
|
|
如果结果是 `Ok(T)`,则把 `T` 赋值给 `f`,如果结果是 `Err(E)`,则返回该错误,所以 `?` 特别适合用来传播错误。
|
|
|
|
|
|
|
|
|
|
|
|
虽然 `?` 和 `match` 功能一致,但是事实上 `?` 会更胜一筹。这应该怎么理解呢?
|
|
|
|
虽然 `?` 和 `match` 功能一致,但是事实上 `?` 会更胜一筹。何解?
|
|
|
|
|
|
|
|
|
|
|
|
想象一下,一个设计良好的系统中,肯定有自定义的错误特征,错误之间很可能会存在上下级关系,例如标准库中的 `std::io::Error `和 `std::error::Error`,前者是io相关的错误结构体,后者是一个最最通用的标准错误特征,同时前者实现了后者,因此 `std::io::Error` 可以转换为 `std:error::Error`。
|
|
|
|
想象一下,一个设计良好的系统中,肯定有自定义的错误特征,错误之间很可能会存在上下级关系,例如标准库中的 `std::io::Error `和 `std::error::Error`,前者是io相关的错误结构体,后者是一个最最通用的标准错误特征,同时前者实现了后者,因此 `std::io::Error` 可以转换为 `std:error::Error`。
|
|
|
|
|
|
|
|
|
|
|
|
明白了以上的错误转换,`?` 的更胜一筹就很好理解了,它可以自动进行类型转换:
|
|
|
|
明白了以上的错误转换,`?` 的更胜一筹就很好理解了,它可以自动进行类型提升(转换):
|
|
|
|
```rust
|
|
|
|
```rust
|
|
|
|
fn open_file() -> Result<File, Box<dyn std::error::Error>> {
|
|
|
|
fn open_file() -> Result<File, Box<dyn std::error::Error>> {
|
|
|
|
let mut f = File::open("hello.txt")?;
|
|
|
|
let mut f = File::open("hello.txt")?;
|
|
|
|