Merge pull request #177 from JesseAtSZ/patch-6

Update array.md
pull/181/head
Sunface 3 years ago committed by GitHub
commit bcb01d6599
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,6 +1,6 @@
# 数组
在日常开发中使用最广的数据结构之一就是数组在Rust中最常用的数组有两个,第一个是长度固定且很快速的`array`,第二个是可动态增长的但是有一点性能损耗的`Vector`,在本书中,我们称`array`为数组,`Vector`为动态数组。
在日常开发中使用最广的数据结构之一就是数组在Rust中最常用的数组有两种,第一种是速度很快但是长度固定的`array`,第二种是可动态增长的但是有性能损耗的`Vector`,在本书中,我们称`array`为数组,`Vector`为动态数组。
不知道你们发现没,这两个数组的关系跟`&str`与`String`的关系很像前者是长度固定的字符串切片后者是可动态增长的字符串。其实在Rust中无论是`String`还是`Vector`它们都是Rust的高级类型集合类型在后面章节会有详细介绍。
@ -9,7 +9,7 @@
- 元素必须有相同的类型
- 依次线性排列
这里再啰嗦一句,**我们这里说的数组是Rust的基本类型因此长度是固定的这个跟其他编程语言不同而其它编程语言的数组往往对应的是Rust中的动态数组`Vector`**,希望读者大大牢记此点。
这里再啰嗦一句,**我们这里说的数组是Rust的基本类型是固定长度的这点与其他编程语言不同其它编程语言的数组往往是可变长度的与Rust中的动态数组`Vector`类似**,希望读者大大牢记此点。
### 创建数组
在Rust中数组是这样定义的
@ -21,7 +21,7 @@ fn main() {
数组语法跟`javascript`很像,也跟大多数编程语言很像。由于它的元素类型大小固定,且长度也是固定,因此**数组是存储在栈上**,性能也会非常优秀。与此对应,动态数组`Vector`是存储在堆上,因此长度可以动态改变。当你不确定是使用数组还是动态数组时,那就应该使用后者,具体见[动态数组Vector](../collections/vector.md)一章.
举个例子,在需要知道一年中各个月份名称的程序中,你很可能希望使用的是数组而不是动态数组。因为月份是固定的,它总是包含 12 个元素:
举个例子,在需要知道一年中各个月份名称的程序中,你很可能希望使用的是数组而不是动态数组。因为月份是固定的,它总是包含 12 个元素:
```rust
let months = ["January", "February", "March", "April", "May", "June", "July",
"August", "September", "October", "November", "December"];
@ -33,13 +33,13 @@ let a: [i32; 5] = [1, 2, 3, 4, 5];
```
这里,数组类型是通过方括号语法声明,`i32`是元素类型,分号后面的数字`5`是数组长度,数组类型也从侧面说明了**数组的元素类型要统一,长度要固定**.
还可以使用下面的语法初始化一个**某个值重复出现N次的数组**:
还可以使用下面的语法初始化一个**某个值重复出现N次的数组**
```rust
let a = [3; 5];
```
`a`数组包含`5`个元素,这些元素的初始化值为`3`,聪明的读者已经发现,这种语法跟数组类型的声明语法其实是保持一致的:`[3;5]` 和`[类型;长度]`.
`a`数组包含`5`个元素这些元素的初始化值为`3`,聪明的读者已经发现,这种语法跟数组类型的声明语法其实是保持一致的:`[3;5]` 和`[类型;长度]`.
在元素重复的场景,这种写法要简单的多,否则你就得疯狂敲击键盘:`let a = [3, 3, 3, 3, 3];`,不过老板可能很喜欢你的这种疯狂编程的状态。
在元素重复的场景,这种写法要简单的多,否则你就得疯狂敲击键盘:`let a = [3, 3, 3, 3, 3];`不过老板可能很喜欢你的这种疯狂编程的状态。
### 访问数组元素
@ -52,10 +52,10 @@ fn main() {
let second = a[1]; // 获取第二个元素
}
```
此处,`first`获取到的值是`9`,`second`是`8`。
与许多语言类似数组的索引下标是从0开始的。此处`first`获取到的值是`9``second`是`8`。
#### 越界访问
如使用超出数组范围的索引访问数组元素,就发生什么?下面是一个接收用户的控制台输入,然后用于访问数组元素的例子:
使用超出数组范围的索引访问数组元素,会怎么样?下面是一个接收用户的控制台输入,然后将其作为索引访问数组元素的例子:
```rust
use std::io;
@ -94,13 +94,13 @@ note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
这就是数组访问越界访问了数组中不存在的元素导致Rust运行时错误。程序因此退出并显示错误消息未执行最后的`println!`语句。
当你尝试使用索引访问元素时Rust 将检查你指定的索引是否小于数组长度。如果索引大于或等于数组长度Rust会出现 panic。这种检查必须在运行时进行,尤其是在这种情况下,因为编译器无法在编译期知道用户之后运行代码时将输入什么值。
当你尝试使用索引访问元素时Rust 将检查你指定的索引是否小于数组长度。如果索引大于或等于数组长度Rust会出现 panic。这种检查只能在运行时进行,比如在上面这种情况下,编译器无法在编译期知道用户运行代码时将输入什么值。
这种就是Rust的安全特性之一。在很多系统编程语言中并不会检查数组越界问题你会访问到无效的内存地址获取到一个风马牛不相及的值最终导致在程序逻辑上出现大问题而且这种问题会非常难以检查。
## 数组切片
在之前的[章节](./string-slice.md#切片(slice)),我们有讲到`切片`这个概念,它允许你引用集合中的某个连续片段,而不是整个集合,对于数组也是,数组切片允许我们引用数组的一部分:
在之前的[章节](./string-slice.md#切片(slice)),我们有讲到`切片`这个概念,它允许你引用集合中的部分连续片段,而不是整个集合,对于数组也是,数组切片允许我们引用数组的一部分:
```rust
let a: [i32; 5] = [1, 2, 3, 4, 5];
@ -109,8 +109,8 @@ let slice: &[i32] = &a[1..3];
assert_eq!(slice, &[2, 3]);
```
上面的数组切片`slice`的类型是`&[i32]`,与之对比,数组的类型是`[i32;5]`,简单总结下切片的特点:
- 切片的长度与数组不同,并不是固定的,而是取决于你使用时指定的始和结束位置
上面的数组切片`slice`的类型是`&[i32]`与之对比,数组的类型是`[i32;5]`,简单总结下切片的特点:
- 切片的长度可以与数组不同,并不是固定的,而是取决于你使用时指定的始和结束位置
- 创建切片的代价非常小,因为切片只是针对底层数组的一个引用
- 切片类型[T]拥有不固定的大小,而切片引用类型&[T]则具有固定的大小因为Rust很多时候都需要固定大小数据类型因此&[T]更有用,`&str`字符串切片也同理
@ -148,9 +148,9 @@ fn main() {
```
做个总结,数组虽然很简单,但是其实还是存在几个要注意的点:
- **数组类型容易跟数组切片混淆**,[T;n]描述了一个数组的类型,而[T]描述了切片的类型, 因为切片是运行期的数据结构,因此它不具备编译器的长度,因此不能用[T;n]的形式去描述
- **数组类型容易跟数组切片混淆**[T;n]描述了一个数组的类型,而[T]描述了切片的类型, 因为切片是运行期的数据结构,因此它不具备编译器的长度(这里不清楚想表达什么意思),因此不能用[T;n]的形式去描述
- `[u8; 3]`和`[u8; 4]`是不同的类型,数组的长度也是类型的一部分
- **在实中,使用最多的是数组切片[T]**,我们往往通过引用的方式去使用`&[T]`,因为后者有固定的类型大小.
- **在实际开发中,使用最多的是数组切片[T]**,我们往往通过引用的方式去使用`&[T]`,因为后者有固定的类型大小
至此关于数据类型部分我们已经全部学完了对于Rust学习而言我们也迈出了坚定的第一步后面将开始更高级特性的学习。未来如果大家有疑惑需要检索知识一样可以继续回顾过往的章节因为本书不仅仅是一门Rust的教程还是一本厚重的Rust工具书。
至此关于数据类型部分我们已经全部学完了对于Rust学习而言我们也迈出了坚定的第一步后面将开始更高级特性的学习。未来如果大家有疑惑需要检索知识一样可以继续回顾过往的章节因为本书不仅仅是一门Rust的教程还是一本厚重的Rust工具书。

Loading…
Cancel
Save