You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

12 KiB

一个实践项目: Web服务器

知识学得再多,不实际应用也是纸上谈兵,不是忘掉就是废掉,对于技术学习尤为如此。在之前章节中,我们已经学习了 Async Rust 的方方面面现在来将这些知识融会贯通最终实现一个并发Web服务器。

多线程版本的Web服务器

在正式开始前,先来看一个单线程版本的 Web 服务器,该例子来源于 Rust Book 一书。

src/main.rs:

use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;

fn main() {
    // 监听本地端口 7878 ,等待 TCP 连接的建立
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();

    // 阻塞等待请求的进入
    for stream in listener.incoming() {
        let stream = stream.unwrap();

        handle_connection(stream);
    }
}

fn handle_connection(mut stream: TcpStream) {
    // 从连接中顺序读取 1024 字节数据
    let mut buffer = [0; 1024];
    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";


    // 处理HTTP协议头若不符合则返回404和对应的`html`文件
    let (status_line, filename) = if buffer.starts_with(get) {
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else {
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
    };
    let contents = fs::read_to_string(filename).unwrap();

    // 将回复内容写入连接缓存中
    let response = format!("{status_line}{contents}");
    stream.write_all(response.as_bytes()).unwrap();
    // 使用flush将缓存中的内容发送到客户端
    stream.flush().unwrap();
}

hello.html:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>Hello!</title>
  </head>
  <body>
    <h1>Hello!</h1>
    <p>Hi from Rust</p>
  </body>
</html>

404.html:

<!DOCTYPE html>
<html lang="en">
  <head>
    <meta charset="utf-8">
    <title>Hello!</title>
  </head>
  <body>
    <h1>Oops!</h1>
    <p>Sorry, I don't know what you're asking for.</p>
  </body>
</html>

运行以上代码,并从浏览器访问 127.0.0.1:7878 你将看到一条来自 Ferris 的问候。

在回忆了单线程版本该如何实现后,我们也将进入正题,一起来实现一个基于 async 的异步Web服务器。

运行异步代码

一个 Web 服务器必须要能并发的处理大量来自用户的请求,也就是我们不能在处理完上一个用户的请求后,再处理下一个用户的请求。上面的单线程版本可以修改为多线程甚至于线程池来实现并发处理,但是线程还是太重了,使用 async 实现 Web 服务器才是最适合的。

首先将 handle_connection 修改为 async 实现:

async fn handle_connection(mut stream: TcpStream) {
    //<-- snip -->
}

该修改会将函数的返回值从 () 变成 Future<Output=()> ,因此直接运行将不再有任何效果,只用通过.await或执行器的poll调用后才能获取 Future 的结果。

在之前的代码中,我们使用了自己实现的简单的执行器来进行.awaitpoll ,实际上这只是为了学习原理,在实际项目中,需要选择一个三方的 async 运行时来实现相关的功能。 具体的选择我们将在下一章节进行讲解,现在先选择 async-std ,该包的最大优点就是跟标准库的 API 类似,相对来说更简单易用。

使用 async-std 作为异步运行时

下面的例子将演示如何使用一个异步运行时async-std来让之前的 async fn 函数运行起来,该运行时允许使用属性 #[async_std::main] 将我们的 fn main 函数变成 async fn main ,这样就可以在 main 函数中直接调用其它 async 函数,否则你得用之前章节的 block_on 方法来让 main 去阻塞等待异步函数的完成,但是这种简单粗暴的阻塞等待方式并不灵活。

修改 Cargo.toml 添加 async-std 包并开启相应的属性:

[dependencies]
futures = "0.3"

[dependencies.async-std]
version = "1.6"
features = ["attributes"]

下面将 main 函数修改为异步的,并在其中调用前面修改的异步版本 handle_connection :

#[async_std::main]
async fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
    for stream in listener.incoming() {
        let stream = stream.unwrap();
        // 警告,这里无法并发
        handle_connection(stream).await;
    }
}

上面的代码虽然已经是异步的,实际上它还无法并发,原因我们后面会解释,先来模拟一下慢请求:

use async_std::task;

async fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 1024];
    stream.read(&mut buffer).unwrap();

    let get = b"GET / HTTP/1.1\r\n";
    let sleep = b"GET /sleep HTTP/1.1\r\n";

    let (status_line, filename) = if buffer.starts_with(get) {
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else if buffer.starts_with(sleep) {
        task::sleep(Duration::from_secs(5)).await;
        ("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
    } else {
        ("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
    };
    let contents = fs::read_to_string(filename).unwrap();

    let response = format!("{status_line}{contents}");
    stream.write(response.as_bytes()).unwrap();
    stream.flush().unwrap();
}

上面是全新实现的 handle_connection 它会在内部睡眠5秒模拟一次用户慢请求需要注意的是我们并没有使用 std::thread::sleep 进行睡眠,原因是该函数是阻塞的,它会让当前线程陷入睡眠中,导致其它任务无法继续运行!因此我们需要一个睡眠函数 async_std::task::sleep,它仅会让当前的任务陷入睡眠,然后该任务会让出线程的控制权,这样线程就可以继续运行其它任务。

因此,光把函数变成 async 往往是不够的,还需要将它内部的代码也都变成异步兼容的,阻塞线程绝对是不可行的。

现在运行服务器,并访问 127.0.0.1:7878/sleep 你会发现只有在完成第一个用户请求(5秒后),才能开始处理第二个用户请求。现在再来看看该如何解决这个问题,让请求并发起来。

并发地处理连接

上面代码最大的问题是 listener.incoming() 是阻塞的迭代器。当 listener 在等待连接时,执行器是无法执行其它Future的,而且只有在我们处理完已有的连接后,才能接收新的连接。

解决方法是将 listener.incoming() 从一个阻塞的迭代器变成一个非阻塞的 Stream 后者在前面章节有过专门介绍:

use async_std::net::TcpListener;
use async_std::net::TcpStream;
use futures::stream::StreamExt;

#[async_std::main]
async fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").await.unwrap();
    listener
        .incoming()
        .for_each_concurrent(/* limit */ None, |tcpstream| async move {
            let tcpstream = tcpstream.unwrap();
            handle_connection(tcpstream).await;
        })
        .await;
}

异步版本的 TcpListenerlistener.incoming() 实现了 Stream 特征,以上修改有两个好处:

  • listener.incoming() 不再阻塞
  • 使用 for_each_concurrent 并发地处理从 Stream 获取的元素

现在上面的实现的关键在于 handle_connection 不能再阻塞:

use async_std::prelude::*;

async fn handle_connection(mut stream: TcpStream) {
    let mut buffer = [0; 1024];
    stream.read(&mut buffer).await.unwrap();

    //<-- snip -->
    stream.write(response.as_bytes()).await.unwrap();
    stream.flush().await.unwrap();
}

在将数据读写改造成异步后,现在该函数也彻底变成了异步的版本,因此一次慢请求不再会阻止其它请求的运行。

使用多线程并行处理请求

聪明的读者不知道有没有发现,之前的例子有一个致命的缺陷:只能使用一个线程并发的处理用户请求。是的,这样也可以实现并发,一秒处理几千次请求问题不大,但是这毕竟没有利用上 CPU 的多核并行能力,无法实现性能最大化。

async 并发和多线程其实并不冲突,而 async-std 包也允许我们使用多个线程去处理,由于 handle_connection 实现了 Send 特征且不会阻塞,因此使用 async_std::task::spawn 是非常安全的:

use async_std::task::spawn;

#[async_std::main]
async fn main() {
    let listener = TcpListener::bind("127.0.0.1:7878").await.unwrap();
    listener
        .incoming()
        .for_each_concurrent(/* limit */ None, |stream| async move {
            let stream = stream.unwrap();
            spawn(handle_connection(stream));
        })
        .await;
}

至此,我们实现了同时使用并行(多线程)和并发( async )来同时处理多个请求!

测试 handle_connection 函数

对于测试 Web 服务器,使用集成测试往往是最简单的,但是在本例子中,将使用单元测试来测试连接处理函数的正确性。

为了保证单元测试的隔离性和确定性,我们使用 MockTcpStream 来替代 TcpStream 。首先,修改 handle_connection 的函数签名让测试更简单,之所以可以修改签名,原因在于 async_std::net::TcpStream 实际上并不是必须的,只要任何结构体实现了 async_std::io::Read, async_std::io::Writemarker::Unpin 就可以替代它:

use std::marker::Unpin;
use async_std::io::{Read, Write};

async fn handle_connection(mut stream: impl Read + Write + Unpin) {

下面来构建一个mock的 TcpStream 并实现了上面这些特征,它包含一些数据,这些数据将被拷贝到 read 缓存中, 然后返回 Poll::Ready 说明 read 已经结束:

use super::*;
use futures::io::Error;
use futures::task::{Context, Poll};

use std::cmp::min;
use std::pin::Pin;

struct MockTcpStream {
    read_data: Vec<u8>,
    write_data: Vec<u8>,
}

impl Read for MockTcpStream {
    fn poll_read(
        self: Pin<&mut Self>,
        _: &mut Context,
        buf: &mut [u8],
    ) -> Poll<Result<usize, Error>> {
        let size: usize = min(self.read_data.len(), buf.len());
        buf[..size].copy_from_slice(&self.read_data[..size]);
        Poll::Ready(Ok(size))
    }
}

Write的实现也类似,需要实现三个方法 : poll_write, poll_flush, 与 poll_closepoll_write 会拷贝输入数据到mock的 TcpStream 中,当完成后返回 Poll::Ready。由于 TcpStream 无需 flushclose,因此另两个方法直接返回 Poll::Ready 即可.

impl Write for MockTcpStream {
    fn poll_write(
        mut self: Pin<&mut Self>,
        _: &mut Context,
        buf: &[u8],
    ) -> Poll<Result<usize, Error>> {
        self.write_data = Vec::from(buf);

        Poll::Ready(Ok(buf.len()))
    }

    fn poll_flush(self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), Error>> {
        Poll::Ready(Ok(()))
    }

    fn poll_close(self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), Error>> {
        Poll::Ready(Ok(()))
    }
}

最后我们的mock需要实现 Unpin 特征,表示它可以在内存中安全的移动,具体内容在前面章节有讲。

use std::marker::Unpin;
impl Unpin for MockTcpStream {}

现在可以准备开始测试了,在使用初始化数据设置好 MockTcpStream 后,我们可以使用 #[async_std::test] 来运行 handle_connection 函数,该函数跟 #[async_std::main] 的作用类似。为了确保 handle_connection 函数正确工作,需要根据初始化数据检查正确的数据被写入到 MockTcpStream 中。

use std::fs;

#[async_std::test]
async fn test_handle_connection() {
    let input_bytes = b"GET / HTTP/1.1\r\n";
    let mut contents = vec![0u8; 1024];
    contents[..input_bytes.len()].clone_from_slice(input_bytes);
    let mut stream = MockTcpStream {
        read_data: contents,
        write_data: Vec::new(),
    };

    handle_connection(&mut stream).await;
    let mut buf = [0u8; 1024];
    stream.read(&mut buf).await.unwrap();

    let expected_contents = fs::read_to_string("hello.html").unwrap();
    let expected_response = format!("HTTP/1.1 200 OK\r\n\r\n{}", expected_contents);
    assert!(stream.write_data.starts_with(expected_response.as_bytes()));
}