You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

314 lines
12 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

# 一个实践项目: Web服务器
知识学得再多,不实际应用也是纸上谈兵,不是忘掉就是废掉,对于技术学习尤为如此。在之前章节中,我们已经学习了 `Async Rust` 的方方面面现在来将这些知识融会贯通最终实现一个并发Web服务器。
## 多线程版本的Web服务器
在正式开始前,先来看一个单线程版本的 `Web` 服务器,该例子来源于 [`Rust Book`](https://doc.rust-lang.org/book/ch20-01-single-threaded.html) 一书。
`src/main.rs`:
```rust
use std::fs;
use std::io::prelude::*;
use std::net::TcpListener;
use std::net::TcpStream;
fn main() {
// 监听本地端口 7878 ,等待 TCP 连接的建立
let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
// 阻塞等待请求的进入
for stream in listener.incoming() {
let stream = stream.unwrap();
handle_connection(stream);
}
}
fn handle_connection(mut stream: TcpStream) {
// 从连接中顺序读取 1024 字节数据
let mut buffer = [0; 1024];
stream.read(&mut buffer).unwrap();
let get = b"GET / HTTP/1.1\r\n";
// 处理HTTP协议头若不符合则返回404和对应的`html`文件
let (status_line, filename) = if buffer.starts_with(get) {
("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else {
("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
};
let contents = fs::read_to_string(filename).unwrap();
// 将回复内容写入连接缓存中
let response = format!("{status_line}{contents}");
stream.write_all(response.as_bytes()).unwrap();
// 使用flush将缓存中的内容发送到客户端
stream.flush().unwrap();
}
```
`hello.html`:
```rust
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Hello!</title>
</head>
<body>
<h1>Hello!</h1>
<p>Hi from Rust</p>
</body>
</html>
```
`404.html`:
```rust
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Hello!</title>
</head>
<body>
<h1>Oops!</h1>
<p>Sorry, I don't know what you're asking for.</p>
</body>
</html>
```
运行以上代码,并从浏览器访问 `127.0.0.1:7878` 你将看到一条来自 `Ferris` 的问候。
在回忆了单线程版本该如何实现后,我们也将进入正题,一起来实现一个基于 `ascyn` 的异步Web服务器。
## 运行异步代码
一个 Web 服务器必须要能并发的处理大量来自用户的请求,也就是我们不能在处理上一个用户的请求后,再处理下一个用户的请求。上面的单线程版本可以修改为多线程甚至于线程池来实现并发处理,但是线程还是太重了,使用 `async` 实现 `Web` 服务器才是最适合的。
首先将 `handle_connection` 修改为 `async` 实现:
```rust
async fn handle_connection(mut stream: TcpStream) {
//<-- snip -->
}
```
该修改会将函数的返回值从 `()` 变成 `Future<Output=()>` ,因此直接运行将不再有任何效果,只用通过`.await`或执行器的`poll`调用后才能获取 `Future` 的结果。
在之前的代码中,我们使用了自己实现的简单的执行器来进行`.await` 或 `poll` ,实际上这只是为了学习原理,**在实际项目中,需要选择一个三方的 `async` 运行时来实现相关的功能**。 具体的选择我们将在下一章节进行讲解,现在先选择 `async-std` ,该包的最大优点就是跟标准库的 API 类似,相对来说更简单易用。
#### 使用 async-std 作为异步运行时
下面的例子将演示如何使用一个异步运行时`async-std`来让之前的 `async fn` 函数运行起来,该运行时允许使用属性 `#[async_std::main]` 将我们的 `fn main` 函数变成 `async fn main` ,这样就可以在 `main` 函数中直接调用其它 `async` 函数,否则你得用之前章节的 `block_on` 方法来让 `main` 去阻塞等待异步函数的完成,但是这种简单粗暴的阻塞等待方式并不灵活。
修改 `Cargo.toml` 添加 `async-std` 包并开启相应的属性:
```toml
[dependencies]
futures = "0.3"
[dependencies.async-std]
version = "1.6"
features = ["attributes"]
```
下面将 `main` 函数修改为异步的,并在其中调用前面修改的异步版本 `handle_connection` :
```rust
#[async_std::main]
async fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").unwrap();
for stream in listener.incoming() {
let stream = stream.unwrap();
// 警告,这里无法并发
handle_connection(stream).await;
}
}
```
**上面的代码虽然已经是异步的,实际上它还无法并发**,原因我们后面会解释,先来模拟一下慢请求:
```rust
use async_std::task;
async fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 1024];
stream.read(&mut buffer).unwrap();
let get = b"GET / HTTP/1.1\r\n";
let sleep = b"GET /sleep HTTP/1.1\r\n";
let (status_line, filename) = if buffer.starts_with(get) {
("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else if buffer.starts_with(sleep) {
task::sleep(Duration::from_secs(5)).await;
("HTTP/1.1 200 OK\r\n\r\n", "hello.html")
} else {
("HTTP/1.1 404 NOT FOUND\r\n\r\n", "404.html")
};
let contents = fs::read_to_string(filename).unwrap();
let response = format!("{status_line}{contents}");
stream.write(response.as_bytes()).unwrap();
stream.flush().unwrap();
}
```
上面是全新实现的 `handle_connection` 它会在内部睡眠5秒模拟一次用户慢请求需要注意的是我们并没有使用 `std::thread::sleep` 进行睡眠, 原因是该函数并不适用于并发代码,它会让当前线程陷入睡眠中,导致其它任务无法继续运行!因此我们需要一个睡眠函数 `async_std::task::sleep`,它仅会让当前的任务陷入睡眠,然后该任务会让出线程的控制权,这样线程就可以继续运行其它任务。
因此,光把函数变成 `async` 往往是不够的,还需要将它内部的代码也都变成异步兼容的,阻塞线程绝对是不可行的。
现在运行服务器,并访问 `127.0.0.1:7878/sleep` 你会发现只有在完成第一个用户请求(5秒后),才能开始处理第二个用户请求。现在再来看看该如何解决这个问题,让请求并发起来。
## 并发地处理连接
上面代码最大的问题是 `listener.incoming()` 是阻塞的迭代器。当 `listener` 在等待连接时,执行器是无法执行其它`Future`的,而且只有在我们处理完已有的连接后,才能接收新的连接。
解决方法是将 `listener.incoming()` 从一个阻塞的迭代器变成一个非阻塞的 `Stream` 后者在前面章节有过专门介绍:
```rust
use async_std::net::TcpListener;
use async_std::net::TcpStream;
use futures::stream::StreamExt;
#[async_std::main]
async fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").await.unwrap();
listener
.incoming()
.for_each_concurrent(/* limit */ None, |tcpstream| async move {
let tcpstream = tcpstream.unwrap();
handle_connection(tcpstream).await;
})
.await;
}
```
异步版本的 `TcpListener``listener.incoming()` 实现了 `Stream` 特征,以上修改有两个好处:
- `listener.incoming()` 不再阻塞
- 使用 `for_each_concurrent` 并发地处理从 `Stream` 获取的元素
现在上面的实现的关键在于 `handle_connection` 不能再阻塞:
```rust
use async_std::prelude::*;
async fn handle_connection(mut stream: TcpStream) {
let mut buffer = [0; 1024];
stream.read(&mut buffer).await.unwrap();
//<-- snip -->
stream.write(response.as_bytes()).await.unwrap();
stream.flush().await.unwrap();
}
```
在将数据读写改造成异步后,现在该函数也彻底变成了异步的版本,因此一次慢请求不再会阻止其它请求的运行。
## 使用多线程并行处理请求
聪明的读者不知道有没有发现,之前的例子有一个致命的缺陷:只能使用一个线程并发的处理用户请求。是的,这样也可以实现并发,一秒处理几千次请求问题不大,但是这毕竟没有利用上 CPU 的多核并行能力,无法实现性能最大化。
`async` 并发和多线程其实并不冲突,而 `async-std` 包也允许我们使用多个线程去处理,由于 `handle_connection` 实现了 `Send` 特征且不会阻塞,因此使用 `async_std::task::spawn` 是非常安全的:
```rust
use async_std::task::spawn;
#[async_std::main]
async fn main() {
let listener = TcpListener::bind("127.0.0.1:7878").await.unwrap();
listener
.incoming()
.for_each_concurrent(/* limit */ None, |stream| async move {
let stream = stream.unwrap();
spawn(handle_connection(stream));
})
.await;
}
```
至此,我们实现了同时使用并行(多线程)和并发( `async` )来同时处理多个请求!
## 测试 handle_connection 函数
对于测试 Web 服务器,使用集成测试往往是最简单的,但是在本例子中,将使用单元测试来测试连接处理函数的正确性。
为了保证单元测试的隔离性和确定性,我们使用 `Mock` 来替代 `TcpStream` 。首先,修改 `handle_connection` 的函数签名让测试更简单,之所以可以修改签名,原因在于 `async_std::net::TcpStream` 实际上并不是必须的,只要任何结构体实现了 `async_std::io::Read`, `async_std::io::Write``marker::Unpin` 就可以替代它:
```rust
use std::marker::Unpin;
use async_std::io::{Read, Write};
async fn handle_connection(mut stream: impl Read + Write + Unpin) {
```
下面来构建一个mock的 `TcpStream` 并实现了上面这些特征,它包含一些数据,这些数据将被拷贝到 `read` 缓存中, 然后返回 `Poll::Ready` 说明 `read` 已经结束:
```rust
use super::*;
use futures::io::Error;
use futures::task::{Context, Poll};
use std::cmp::min;
use std::pin::Pin;
struct MockTcpStream {
read_data: Vec<u8>,
write_data: Vec<u8>,
}
impl Read for MockTcpStream {
fn poll_read(
self: Pin<&mut Self>,
_: &mut Context,
buf: &mut [u8],
) -> Poll<Result<usize, Error>> {
let size: usize = min(self.read_data.len(), buf.len());
buf[..size].copy_from_slice(&self.read_data[..size]);
Poll::Ready(Ok(size))
}
}
```
`Write`的实现也类似,需要实现三个方法 : `poll_write`, `poll_flush`, and `poll_close``poll_write` 会拷贝输入数据到mock的 `TcpStream` 中,当完成后返回 `Poll::Ready`。由于 `TcpStream` 无需 `flush``close`,因此另两个方法直接返回 `Poll::Ready` 即可.
```rust
impl Write for MockTcpStream {
fn poll_write(
mut self: Pin<&mut Self>,
_: &mut Context,
buf: &[u8],
) -> Poll<Result<usize, Error>> {
self.write_data = Vec::from(buf);
Poll::Ready(Ok(buf.len()))
}
fn poll_flush(self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), Error>> {
Poll::Ready(Ok(()))
}
fn poll_close(self: Pin<&mut Self>, _: &mut Context) -> Poll<Result<(), Error>> {
Poll::Ready(Ok(()))
}
}
```
最后我们的mock需要实现 `Unpin` 特征,表示它可以在内存中安全的移动,具体内容在[前面章节](./pin-unpin.md)有讲。
```rust
use std::marker::Unpin;
impl Unpin for MockTcpStream {}
```
现在可以准备开始测试了,在使用初始化数据设置好 `MockTcpStream` 后,我们可以使用 `#[async_std::test]` 来运行 `handle_connection` 函数,该函数跟 `#[async_std::main]` 的作用类似。为了确保 `handle_connection` 函数正确工作,需要根据初始化数据检查正确的数据被写入到 `MockTcpStream` 中。
```rust
use std::fs;
#[async_std::test]
async fn test_handle_connection() {
let input_bytes = b"GET / HTTP/1.1\r\n";
let mut contents = vec![0u8; 1024];
contents[..input_bytes.len()].clone_from_slice(input_bytes);
let mut stream = MockTcpStream {
read_data: contents,
write_data: Vec::new(),
};
handle_connection(&mut stream).await;
let mut buf = [0u8; 1024];
stream.read(&mut buf).await.unwrap();
let expected_contents = fs::read_to_string("hello.html").unwrap();
let expected_response = format!("HTTP/1.1 200 OK\r\n\r\n{}", expected_contents);
assert!(stream.write_data.starts_with(expected_response.as_bytes()));
}
```