6.2 KiB
&'static 和 T: 'static
Rust 的难点之一就在于它有不少容易混淆的概念,例如 &str
、str
与 String
, 再比如本文标题那两位。不过与字符串也有不同,这两位对于普通用户来说往往是无需进行区分的,但是当大家想要深入学习或使用 Rust 时,它们就会成为成功路上的拦路虎了。
与生命周期的其它章节不同,本文短小精悍,阅读过程可谓相当轻松愉快,话不多说,let's go。
'static
在 Rust 中是相当常见的,例如字符串字面值就具有 'static
生命周期:
fn main() {
let mark_twain: &str = "Samuel Clemens";
print_author(mark_twain);
}
fn print_author(author: &'static str) {
println!("{}", author);
}
除此之外,特征对象的生命周期也是 'static
,例如这里所提到的。
除了 &'static
的用法外,我们在另外一种场景中也可以见到 'static
的使用:
use std::fmt::Display;
fn main() {
let mark_twain = "Samuel Clemens";
print(&mark_twain);
}
fn print<T: Display + 'static>(message: &T) {
println!("{}", message);
}
在这里,很明显 'static
是作为生命周期约束来使用了。 那么问题来了, &'static
和 T: 'static
的用法到底有何区别?
&'static
&'static
对于生命周期有着非常强的要求:一个引用必须要活得跟剩下的程序一样久,才能被标注为 &'static
。
对于字符串字面量来说,它直接被打包到二进制文件中,永远不会被 drop
,因此它能跟程序活得一样久,自然它的生命周期是 'static
。
但是,&'static
生命周期针对的仅仅是引用,而不是持有该引用的变量,对于变量来说,还是要遵循相应的作用域规则 :
use std::{slice::from_raw_parts, str::from_utf8_unchecked};
fn get_memory_location() -> (usize, usize) {
// “Hello World” 是字符串字面量,因此它的生命周期是 `'static`.
// 但持有它的变量 `string` 的生命周期就不一样了,它完全取决于变量作用域,对于该例子来说,也就是当前的函数范围
let string = "Hello World!";
let pointer = string.as_ptr() as usize;
let length = string.len();
(pointer, length)
// `string` 在这里被 drop 释放
// 虽然变量被释放,无法再被访问,但是数据依然还会继续存活
}
fn get_str_at_location(pointer: usize, length: usize) -> &'static str {
// 使用原生指针需要 `unsafe{}` 语句块
unsafe { from_utf8_unchecked(from_raw_parts(pointer as *const u8, length)) }
}
fn main() {
let (pointer, length) = get_memory_location();
let message = get_str_at_location(pointer, length);
println!(
"The {} bytes at 0x{:X} stored: {}",
length, pointer, message
);
// 如果大家想知道为何处理原生指针需要 `unsafe`,可以试着反注释以下代码
// let message = get_str_at_location(1000, 10);
}
上面代码有两点值得注意:
&'static
的引用确实可以和程序活得一样久,因为我们通过get_str_at_location
函数直接取到了对应的字符串- 持有
&'static
引用的变量,它的生命周期受到作用域的限制,大家务必不要搞混了
T: 'static
相比起来,我们的生命周期约束就弱得多了,它只能试图向编译器表达:如果可以的话,我想要一个可以一直存活的变量, see ? 跟 &'static
表达的强度完全不一样,下面用例子来说明:
use std::fmt::Display;
fn main() {
let r1;
let r2;
{
static STATIC_EXAMPLE: i32 = 42;
r1 = &STATIC_EXAMPLE;
let x = "&'static str";
r2 = x;
// r1 和 r2 持有的数据都是 'static 的,因此在花括号结束后,并不会被释放
}
println!("&'static i32: {}", r1); // -> 42
println!("&'static str: {}", r2); // -> &'static str
let r3: &str;
{
let s1 = "String".to_string();
// s1 虽然没有 'static 生命周期,但是它依然可以满足 T: 'static 的约束
// 充分说明这个约束是多么的弱。。
static_bound(&s1);
// s1 是 String 类型,没有 'static 的生命周期,因此下面代码会报错
r3 = &s1;
// s1 在这里被 drop
}
println!("{}", r3);
}
fn static_bound<T: Display + 'static>(t: &T) {
println!("{}", t);
}
以上代码充分说明了两个问题:
'static
生命周期的数据可以一直存活,因此r1
和r2
才能在语句块内部被赋值T: 'static
的约束真的很弱,s1
明明生命周期只在内部语句块内有效,但是该约束依然可以满足,static_bound
成功被调用
两者的区别
总之, &'static
!= T: 'static
,虽然它们看起来真的非常像。
为了进一步验证,我们修改下 static_bound
的签名 :
use std::fmt::Display;
fn main() {
let s1 = "String".to_string();
static_bound(&s1);
}
fn static_bound<T: Display>(t: &'static T) {
println!("{}", t);
}
在这里,不再使用生命周期约束来限制 T
,而直接指定 T
的生命周期是 &'static
,不出所料,代码报错了:
error[E0597]: `s1` does not live long enough
--> src/main.rs:8:18
|
8 | static_bound(&s1);
| -------------^^^-
| | |
| | borrowed value does not live long enough
| argument requires that `s1` is borrowed for `'static`
9 | }
| - `s1` dropped here while still borrowed
原因很简单,s1
活得不够久,没有满足 'static
的生命周期要求。
使用经验
至此,相信大家对于 'static
和 T: 'static
也有了清晰的理解,那么我们应该如何使用它们呢?
作为经验之谈,可以这么来:
- 如果你需要添加
&'static
来让代码工作,那很可能是设计上出问题了 - 如果你希望满足和取悦编译器,那就使用
T: 'static
,很多时候它都能解决问题
一个小知识,在 Rust 标准库中,有 48 处用到了 &'static ,112 处用到了
T: 'static
,看来取悦编译器不仅仅是菜鸟需要的,高手也经常用到 :)