@ -2,21 +2,21 @@
> [ch10-02-traits.md ](https://github.com/rust-lang/book/blob/master/second-edition/src/ch10-02-traits.md )
> < br >
> commit e5a987f5da3fba24e55f5c7102ec63f9dc3bc360
> commit 1cbcc277af6931d3091fe46a8f379fefae7202db
trait 允许我们进行另一种抽象:他们让我们可以抽象类型所通用的行为。*trait* 告诉 Rust 编译器某个特定类型拥有可能与其他类型共享的功能。在使用泛型类型参数的场景中,可以使用 *trait bounds* 在编译时指定泛型可以是任何实现了某个 trait 的类型,并由此在这个场景下拥有我们希望的功能。
> 注意:*trait* 类似于其他语言中的常被称为**接口**( *interfaces*)的功能,虽然有一些不同。
> 注意:*trait* 类似于其他语言中的常被称为 ** 接口**( *interfaces*)的功能,虽然有一些不同。
### 定义 trait
一个类型的行为由其可供调用的方法构成。如果可以对不同类型调用相同的方法的话, 这些类型就可以共享相同的行为了。trait 定义是一种将方法签名组合起来的方法,目的是定义一个实现某些目的所必需的行为的集合。
例如,这里有多个存放了不同类型和属性文本的结构体:结构体`NewsArticle`用于存放发生于世界各地的新闻故事,而结构体`Tweet`最多只能存放 140 个字符的内容,以及像是否转推或是否是对推友的回复这样的元数据。
例如,这里有多个存放了不同类型和属性文本的结构体:结构体 `NewsArticle` 用于存放发生于世界各地的新闻故事,而结构体 `Tweet` 最多只能存放 140 个字符的内容,以及像是否转推或是否是对推友的回复这样的元数据。
我们想要创建一个多媒体聚合库用来显示可能储存在`NewsArticle`或`Tweet`实例中的数据的总结。每一个结构体都需要的行为是他们是能够被总结的,这样的话就可以调用实例的`summary`方法来请求总结。列表 10-11 中展示了一个表现这个概念的`Summarizable` trait 的定义:
我们想要创建一个多媒体聚合库用来显示可能储存在 `NewsArticle` 或 `Tweet` 实例中的数据的总结。每一个结构体都需要的行为是他们是能够被总结的,这样的话就可以调用实例的 `summary` 方法来请求总结。列表 10-12 中展示了一个表现这个概念的 `Summarizable` trait 的定义:
< span class = "filename" > Filename : lib.rs< / span >
< span class = "filename" > 文件名 : lib.rs< / span >
```rust
pub trait Summarizable {
@ -24,18 +24,17 @@ pub trait Summarizable {
}
```
< span class = "caption" > Listing 10-11: Definition of a `Summarizable` trait that
consists of the behavior provided by a `summary` method</ span >
< span class = "caption" > 列表 10-12: `Summarizable` trait 定义,它包含由 `summary` 方法提供的行为</ span >
使用`trait`关键字来定义 一个 trait, 后面是 trait 的名字,在这个例子中是`Summarizable`。在大括号中声明描述实现这个 trait 的类型所需要的行为的方法签名,在这个例子中是是`fn summary( & self) -> String`。在方法签名后跟分号而不是在大括号中提供其实现。接着每一个实现这个 trait 的类型都需要提供其自定义行为的方法体,编译器也会确保任何实现`Summarizable` trait 的类型都拥有与这个签名的定义完全一致的`summary`方法。
使用 `trait` 关键字来声明 一个 trait, 后面是 trait 的名字,在这个例子中是 `Summarizable` 。在大括号中声明描述实现这个 trait 的类型所需要的行为的方法签名,在这个例子中是是 `fn summary(&self) -> String` 。在方法签名后跟分号, 而不是在大括号中提供其实现。接着每一个实现这个 trait 的类型都需要提供其自定义行为的方法体,编译器也会确保任何实现 `Summarizable` trait 的类型都拥有与这个签名的定义完全一致的 `summary` 方法。
trait 体中可以有多个方法,一行一个方法签名且都以分号结尾。
### 为类型实现 trait
现在我们定义了`Summarizable` trait, 接着就可以在多媒体聚合库中需要拥有这个行为的类型上实现它了。列表 10-12 中展示了`NewsArticle`结构体上`Summarizable` trait 的一个实现,它使用标题、作者和创建的位置作为`summary`的返回值。对于`Tweet`结构体,我们选择将`summary`定义为用户名后跟推文的全部文本作为返回值,并假设推文内容已经被限制为 140 字符以内。
现在我们定义了 `Summarizable` trait, 接着就可以在多媒体聚合库中需要拥有这个行为的类型上实现它了。列表 10-12 中展示了 `NewsArticle` 结构体上 `Summarizable` trait 的一个实现,它使用标题、作者和创建的位置作为 `summary` 的返回值。对于 `Tweet` 结构体,我们选择将 `summary` 定义为用户名后跟推文的全部文本作为返回值,并假设推文内容已经被限制为 140 字符以内。
< span class = "filename" > Filename : lib.rs< / span >
< span class = "filename" > 文件名 : lib.rs< / span >
```rust
# pub trait Summarizable {
@ -69,12 +68,11 @@ impl Summarizable for Tweet {
}
```
< span class = "caption" > Listing 10-12: Implementing the `Summarizable` trait on
the `NewsArticle` and `Tweet` types</ span >
< span class = "caption" > 列表 10-13: 在 `NewsArticle` 和 `Tweet` 类型上实现 `Summarizable` trait</ span >
在类型上实现 trait 类似与实现与 trait 无关的方法。区别在于`impl`关键字之后,我们提供需要实现 trait 的名称,接着是`for`和需要实现 trait 的类型的名称。在`impl`块中,使用 trait 定义中的方法签名,不过不再后跟分号,而是需要在大括号中编写函数体来为特定类型实现 trait 方法所拥有的行为。
在类型上实现 trait 类似与实现与 trait 无关的方法。区别在于 `impl` 关键字之后,我们提供需要实现 trait 的名称,接着是 `for` 和需要实现 trait 的类型的名称。在 `impl` 块中,使用 trait 定义中的方法签名,不过不再后跟分号,而是需要在大括号中编写函数体来为特定类型实现 trait 方法所拥有的行为。
一旦实现了 trait, 我们就可以用与`NewsArticle`和`Tweet`实例的非 trait 方法一样的方式调用 trait 方法了:
一旦实现了 trait, 我们就可以用与 `NewsArticle` 和 `Tweet` 实例的非 trait 方法一样的方式调用 trait 方法了:
```rust,ignore
let tweet = Tweet {
@ -87,11 +85,11 @@ let tweet = Tweet {
println!("1 new tweet: {}", tweet.summary());
```
这会打印出`1 new tweet: horse_ebooks: of course, as you probably already know, people`。
这会打印出 `1 new tweet: horse_ebooks: of course, as you probably already know, people` 。
注意因为列表 10-12 中我们在相同的`lib.rs`里定义了`Summarizable` trait 和`NewsArticle`与`Tweet`类型,所以他们是位于同一作用域的。如果这个`lib.rs`是对应`aggregator` crate 的,而别人想要利用我们 crate 的功能外加为其`WeatherForecast`结构体实现`Summarizable` trait, 在实现`Summarizable` trait 之前他们首先就需要将其导入其作用域中,如列表 10-13 所示:
注意因为列表 10-12 中我们在相同的 `lib.rs` 里定义了 `Summarizable` trait 和 `NewsArticle` 与 `Tweet` 类型,所以他们是位于同一作用域的。如果这个 `lib.rs` 是对应 `aggregator` crate 的,而别人想要利用我们 crate 的功能外加为其 `WeatherForecast` 结构体实现 `Summarizable` trait, 在实现 `Summarizable` trait 之前他们首先就需要将其导入其作用域中,如列表 10-14 所示:
< span class = "filename" > Filename : lib.rs< / span >
< span class = "filename" > 文件名 : lib.rs< / span >
```rust,ignore
extern crate aggregator;
@ -113,20 +111,19 @@ impl Summarizable for WeatherForecast {
}
```
< span class = "caption" > Listing 10-13: Bringing the `Summarizable` trait from our
`aggregator` crate into scope in another crate</ span >
< span class = "caption" > 列表 10-14: 在另一个 crate 中将 `aggregator` crate 的 `Summarizable` trait 引入作用域</ span >
另外这段代码假设`Summarizable`是一个公有 trait, 这是因为列表 10-11 中`trait`之前使用了`pub` 关键字。
另外这段代码假设 `Summarizable` 是一个公有 trait, 这是因为列表 10-12 中 `trait` 之前使用了 `pub` 关键字。
trait 实现的一个需要注意的限制是:只能在 trait 或对应类型位于我们 crate 本地的时候为其实现 trait。换句话说, 不允许对外部类型实现外部 trait。例如, 不能`Vec`上实现`Display` trait, 因为`Display`和`Vec`都定义于标准库中。允许在像`Tweet`这样作为我们`aggregator`crate 部分功能的自定义类型上实现标准库中的 trait `Display` 。也允许在`aggregator`crate中为`Vec`实现`Summarizable`,因为`Summarizable`定义与此。这个限制是我们称为 *orphan rule* 的一部分,如果你感兴趣的可以在类型理论中找到它。简单来说,它被称为 orphan rule 是因为其父类型不存在。没有这条规则的话,两个 crate 可以分别对相同类型是实现相同的 trait, 因而这两个实现会相互冲突: Rust 将无从得知应该使用哪一个。因为 Rust 强制执行 orphan rule, 其他人编写的代码不会破坏你代码, 反之亦是如此。
trait 实现的一个需要注意的限制是:只能在 trait 或对应类型位于我们 crate 本地的时候为其实现 trait。换句话说, 不允许对外部类型实现外部 trait。例如, 不能在 `Vec` 上实现 `Display` trait, 因为 `Display` 和 `Vec` 都定义于标准库中。允许在像 `Tweet` 这样作为我们 `aggregator` crate 部分功能的自定义类型上实现标准库中的 trait `Display` 。也允许在 `aggregator` crate 中为 `Vec` 实现 `Summarizable` ,因为 `Summarizable` 定义与此。这个限制是我们称为 *orphan rule* 的一部分,如果你感兴趣的可以在类型理论中找到它。简单来说,它被称为 orphan rule 是因为其父类型不存在。没有这条规则的话,两个 crate 可以分别对相同类型是实现相同的 trait, 因而这两个实现会相互冲突: Rust 将无从得知应该使用哪一个。因为 Rust 强制执行 orphan rule, 其他人编写的代码不会破坏你代码, 反之亦是如此。
### 默认实现
有时为 trait 中的某些或全部提供默认的行为,而不是在每个类型的每个实现中都定义自己的行为是很有用的。这样当为某个特定类型实现 trait 时,可以选择保留或重载每个方法的默认行为。
有时为 trait 中的某些或全部方法 提供默认的行为,而不是在每个类型的每个实现中都定义自己的行为是很有用的。这样当为某个特定类型实现 trait 时,可以选择保留或重载每个方法的默认行为。
列表 10-14 中展示了如何为`Summarize` trait 的`summary`方法指定一个默认的字符串值,而不是像列表 10-11 中那样只是定义方法签名:
列表 10-15 中展示了如何为 `Summarize` trait 的 `summary` 方法指定一个默认的字符串值,而不是像列表 10-12 中那样只是定义方法签名:
< span class = "filename" > Filename : lib.rs< / span >
< span class = "filename" > 文件名 : lib.rs< / span >
```rust
pub trait Summarizable {
@ -136,16 +133,15 @@ pub trait Summarizable {
}
```
< span class = "caption" > Listing 10-14: Definition of a `Summarizable` trait with
a default implementation of the `summary` method</ span >
< span class = "caption" > 列表 10-15: `Summarizable` trait 的定义,带有一个 `summary` 方法的默认实现</ span >
如果想要对`NewsArticle`实例使用这个默认实现,而不是像列表 10-12 中那样定义一个自己的实现,则可以指定一个空的`impl`块:
如果想要对 `NewsArticle` 实例使用这个默认实现,而不是像列表 10-13 中那样定义一个自己的实现,则可以指定一个空的 `impl` 块:
```rust,ignore
impl Summarizable for NewsArticle {}
```
即便选择不再直接为`NewsArticle`定义`summary`方法了,因为`summary`方法有一个默认实现而且`NewsArticle`被指定为实现了`Summarizable` trait, 我们仍然可以对`NewsArticle`的实例调用`summary`方法:
即便选择不再直接为 `NewsArticle` 定义 `summary` 方法了,因为 `summary` 方法有一个默认实现而且 `NewsArticle` 被指定为实现了 `Summarizable` trait, 我们仍然可以对 `NewsArticle` 的实例调用 `summary` 方法:
```rust,ignore
let article = NewsArticle {
@ -159,11 +155,11 @@ let article = NewsArticle {
println!("New article available! {}", article.summary());
```
这段代码会打印`New article available! (Read more...)`。
这段代码会打印 `New article available! (Read more...)` 。
将`Summarizable` trait 改变为拥有默认`summary`实现并不要求对列表 10-12 中的`Tweet`和列表 10-13 中的`WeatherForecast`对`Summarizable`的 实现做任何改变:重载一个默认实现的语法与实现没有默认实现的 trait 方法时完全一样的。
将 `Summarizable` trait 改变为拥有默认 `summary` 实现并不要求对列表 10-13 中 `Tweet` 和列表 10-14 中 `WeatherForecast` 的 `Summarizable` 实现做任何改变:重载一个默认实现的语法与实现没有默认实现的 trait 方法时完全一样的。
默认实现允许调用相同 trait 中的其他方法, 哪怕这些方法没有默认实现。通过这种方法, trait 可以实现很多有用的功能而只需实现一小部分特定内容。我们可以选择让`Summarizable` trait 也拥有一个要求实现的`author_summary`方法,接着`summary`方法则提供默认实现并调用`author_summary`方法:
默认实现允许调用相同 trait 中的其他方法, 哪怕这些方法没有默认实现。通过这种方法, trait 可以实现很多有用的功能而只需实现一小部分特定内容。我们可以选择让`Summarizable` trait 也拥有一个要求实现 的`author_summary` 方法,接着 `summary` 方法则提供默认实现并调用 `author_summary` 方法:
```rust
pub trait Summarizable {
@ -175,7 +171,7 @@ pub trait Summarizable {
}
```
为了使用这个版本的`Summarizable`,只需在实现 trait 时定义`author_summary`即可:
为了使用这个版本的 `Summarizable` ,只需在实现 trait 时定义 `author_summary` 即可:
```rust,ignore
impl Summarizable for Tweet {
@ -185,7 +181,7 @@ impl Summarizable for Tweet {
}
```
一旦定义了`author_summary`,我们就可以对`Tweet`结构体的实例调用`summary`了,而`summary`的默认实现会调用我们提供的`author_summary`定义。
一旦定义了 `author_summary` ,我们就可以对 `Tweet` 结构体的实例调用 `summary` 了,而 `summary` 的默认实现会调用我们提供的 `author_summary` 定义。
```rust,ignore
let tweet = Tweet {
@ -198,7 +194,7 @@ let tweet = Tweet {
println!("1 new tweet: {}", tweet.summary());
```
这会打印出`1 new tweet: (Read more from @horse_ebooks ...)`。
这会打印出 `1 new tweet: (Read more from @horse_ebooks...)` 。
注意在重载过的实现中调用默认实现是不可能的。
@ -206,7 +202,7 @@ println!("1 new tweet: {}", tweet.summary());
现在我们定义了 trait 并在类型上实现了这些 trait, 也可以对泛型类型参数使用 trait。我们可以限制泛型不再适用于任何类型, 编译器会确保其被限制为那些实现了特定 trait 的类型,由此泛型就会拥有我们希望其类型所拥有的功能。这被称为指定泛型的 *trait bounds* 。
例如在列表 10-12 中为`NewsArticle`和`Tweet`类型实现了`Summarizable` trait。我们可以定义一个函数`notify`来调用`summary`方法,它拥有一个泛型类型`T`的参数`item`。为了能够在`item`上调用`summary`而不出现错误,我们可以在`T`上使用 trait bounds 来指定`item`必须是实现了`Summarizable` trait 的类型:
例如在列表 10-13 中为 `NewsArticle` 和 `Tweet` 类型实现了 `Summarizable` trait。我们可以定义一个函数 `notify` 来调用 `summary` 方法,它拥有一个泛型类型 `T` 的参数 `item` 。为了能够在 `item` 上调用 `summary` 而不出现错误,我们可以在 `T` 上使用 trait bounds 来指定 `item` 必须是实现了 `Summarizable` trait 的类型:
```rust,ignore
pub fn notify< T: Summarizable > (item: T) {
@ -214,17 +210,17 @@ pub fn notify<T: Summarizable>(item: T) {
}
```
trait bounds 连同泛型类型参数声明一同出现,位于尖括号中的冒号后面。由于`T`上的 trait bounds, 我们可以传递任何`NewsArticle`或`Tweet`的实例来调用`notify`函数。列表 10-13 中使用我们`aggregator` crate 的外部代码也可以传递一个`WeatherForecast`的实例来调用`notify`函数,因为`WeatherForecast`同样也实现了`Summarizable`。使用任何其他类型,比如`String`或`i32`,来调用`notify` 的代码将不能编译,因为这些类型没有实现`Summarizable`。
trait bounds 连同泛型类型参数声明一同出现,位于尖括号中的冒号后面。由于 `T` 上的 trait bounds, 我们可以传递任何 `NewsArticle` 或 `Tweet` 的实例来调用 `notify` 函数。列表 10-14 中使用我们 `aggregator` crate 的外部代码也可以传递一个 `WeatherForecast` 的实例来调用 `notify` 函数,因为 `WeatherForecast` 同样也实现了 `Summarizable` 。使用任何其他类型,比如 `String` 或 `i32` ,来调用 `notify` 的代码将不能编译,因为这些类型没有实现 `Summarizable` 。
可以通过`+`来为泛型指定多个 trait bounds。如果我们需要能够在函数中使用`T`类型的显示格式的同时也能使用`summary`方法,则可以使用 trait bounds `T: Summarizable + Display` 。这意味着`T`可以是任何实现了`Summarizable`和`Display`的类型。
可以通过 `+` 来为泛型指定多个 trait bounds。如果我们需要能够在函数中使用 `T` 类型的显示格式的同时也能使用 `summary` 方法,则可以使用 trait bounds `T: Summarizable + Display` 。这意味着 `T` 可以是任何实现了 `Summarizable` 和 `Display` 的类型。
对于拥有多个泛型类型参数的函数,每一个泛型都可以有其自己的 trait bounds。在函数名和参数列表之间的尖括号中指定很多的 trait bound 信息将是难以阅读的,所以有另外一个指定 trait bounds 的语法,它将其移动到函数签名后的`where`从句中。所以相比这样写:
对于拥有多个泛型类型参数的函数,每一个泛型都可以有其自己的 trait bounds。在函数名和参数列表之间的尖括号中指定很多的 trait bound 信息将是难以阅读的,所以有另外一个指定 trait bounds 的语法,它将其移动到函数签名后的 `where` 从句中。所以相比这样写:
```rust,ignore
fn some_function< T: Display + Clone , U: Clone + Debug > (t: T, u: U) -> i32 {
```
我们也可以使用`where`从句:
我们也可以使用 `where` 从句:
```rust,ignore
fn some_function< T , U > (t: T, u: U) -> i32
@ -235,11 +231,11 @@ fn some_function<T, U>(t: T, u: U) -> i32
这就显得不那么杂乱,同时也使这个函数看起来更像没有很多 trait bounds 的函数。这时函数名、参数列表和返回值类型都离得很近。
### 使用 trait bounds 来修复`largest`函数
### 使用 trait bounds 来修复 `largest` 函数
所以任何想要对泛型使用 trait 定义的行为的时候,都需要在泛型参数类型上指定 trait bounds。现在我们就可以修复列表 10-5 中那个使用泛型类型参数的`largest`函数定义了!当我们将其放置不管的时候,它会出现这个错误:
所以任何想要对泛型使用 trait 定义的行为的时候,都需要在泛型参数类型上指定 trait bounds。现在我们就可以修复列表 10-5 中那个使用泛型类型参数的 `largest` 函数定义了!当我们将其放置不管的时候,它会出现这个错误:
```
```text
error[E0369]: binary operation `>` cannot be applied to type `T`
|
5 | if item > largest {
@ -248,7 +244,7 @@ error[E0369]: binary operation `>` cannot be applied to type `T`
note: an implementation of `std::cmp::PartialOrd` might be missing for `T`
```
在`largest`函数体中我们想要使用大于运算符比较两个`T`类型的值。这个运算符被定义为标准库中 trait `std::cmp::PartialOrd` 的一个默认方法。所以为了能够使用大于运算符,需要在`T`的 trait bounds 中指定`PartialOrd`,这样`largest`函数可以用于任何可以比较大小的类型的 slice。因为`PartialOrd`位于 prelude 中所以并不需要手动将其引入作用域。
在 `largest` 函数体中我们想要使用大于运算符比较两个 `T` 类型的值。这个运算符被定义为标准库中 trait `std::cmp::PartialOrd` 的一个默认方法。所以为了能够使用大于运算符,需要在 `T` 的 trait bounds 中指定 `PartialOrd` ,这样 `largest` 函数可以用于任何可以比较大小的类型的 slice。因为 `PartialOrd` 位于 prelude 中所以并不需要手动将其引入作用域。
```rust,ignore
fn largest< T: PartialOrd > (list: & [T]) -> T {
@ -275,11 +271,11 @@ error[E0507]: cannot move out of borrowed content
| cannot move out of borrowed content
```
错误的核心是`cannot move out of type [T], a non-copy array`,对于非泛型版本的`largest`函数,我们只尝试了寻找最大的`i32`和`char`。正如第四章讨论过的,像`i32`和`char`这样的类型是已知大小的并可以储存在栈上,所以他们实现了`Copy` trait。当我们将`largest`函数改成使用泛型后,现在`list`参数的类型就有可能是没有实现`Copy` trait 的,这意味着我们可能不能将`list[0]`的值移动到`largest`变量中。
错误的核心是 `cannot move out of type [T], a non-copy array` ,对于非泛型版本的 `largest` 函数,我们只尝试了寻找最大的 `i32` 和 `char` 。正如第四章讨论过的,像 `i32` 和 `char` 这样的类型是已知大小的并可以储存在栈上,所以他们实现了 `Copy` trait。当我们将 `largest` 函数改成使用泛型后,现在 `list` 参数的类型就有可能是没有实现 `Copy` trait 的,这意味着我们可能不能将 `list[0]` 的值移动到 `largest` 变量中。
如果只想对实现了`Copy`的类型调用这些代码,可以在`T`的 trait bounds 中增加`Copy`!列表 10-15 中展示了一个可以编译的泛型版本的`largest`函数的完整代码,只要传递给`largest`的 slice 值的类型实现了`PartialOrd`和`Copy`这两个 trait, 例如`i32`和`char` :
如果只想对实现了 `Copy` 的类型调用这些代码,可以在 `T` 的 trait bounds 中增加 `Copy` !列表 10-16 中展示了一个可以编译的泛型版本的 `largest` 函数的完整代码,只要传递给 `largest` 的 slice 值的类型实现了 `PartialOrd` 和 `Copy` 这两个 trait, 例如 `i32` 和 `char` :
< span class = "filename" > Filename : src/main.rs< / span >
< span class = "filename" > 文件名 : src/main.rs< / span >
```rust
use std::cmp::PartialOrd;
@ -297,24 +293,72 @@ fn largest<T: PartialOrd + Copy>(list: &[T]) -> T {
}
fn main() {
let numbers = vec![34, 50, 25, 100, 65];
let number_li st = vec![34, 50, 25, 100, 65];
let result = largest(&number s);
let result = largest(&number _li st );
println!("The largest number is {}", result);
let chars = vec!['y', 'm', 'a', 'q'];
let char_li st = vec!['y', 'm', 'a', 'q'];
let result = largest(&char s);
let result = largest(&char _li st );
println!("The largest char is {}", result);
}
```
< span class = "caption" > Listing 10-15: A working definition of the `largest`
function that works on any generic type that implements the `PartialOrd` and
`Copy` traits</ span >
< span class = "caption" > 列表 10-16: 一个可以用于任何实现了 `PartialOrd` 和 `Copy` trait 的泛型的 `largest` 函数</ span >
如果并不希望限制 `largest` 函数只能用于实现了 `Copy` trait 的类型,我们可以在 `T` 的 trait bounds 中指定 `Clone` 而不是 `Copy` ,并克隆 slice 的每一个值使得 `largest` 函数拥有其所有权。但是使用 `clone` 函数潜在意味着更多的堆分配,而且堆分配在涉及大量数据时可能会相当缓慢。另一种 `largest` 的实现方式是返回 slice 中一个 `T` 值的引用。如果我们将函数返回值从 `T` 改为 `&T` 并改变函数体使其能够返回一个引用,我们将不需要任何 `Clone` 或 `Copy` 的 trait bounds 而且也不会有任何的堆分配。尝试自己实现这种替代解决方式吧!
### 使用 trait bound 有条件的实现方法
通过使用带有 trati bound 的泛型 `impl` 块,可以有条件的只为实现了特定 trait 的类型实现方法。例如,列表 10-17 中的类型 `Pair<T>` 总是实现了 `new` 方法,不过只有 `Pair<T>` 内部的 `T` 实现了 `PartialOrd` trait 来允许比较和 `Display` trait 来启用打印,才会实现 `cmp_display` :
```rust
use std::fmt::Display;
struct Pair< T > {
x: T,
y: T,
}
impl< T > Pair< T > {
fn new(x: T, y: T) -> Self {
Self {
x,
y,
}
}
}
impl< T: Display + PartialOrd > Pair< T > {
fn cmp_display(& self) {
if self.x >= self.y {
println!("The largest member is x = {}", self.x);
} else {
println!("The largest member is y = {}", self.y);
}
}
}
```
< span class = "caption" > 列表 10-17: 根据 trait bound 在泛型上有条件的实现方法< / span >
也可以对任何实现了特定 trait 的类型有条件的实现 trait。对任何满足特定 trait bound 的类型实现 trait 被称为 *blanket implementations* ,他们被广泛的用于 Rust 标准库中。例如,标准库为任何实现了 `Display` trait 的类型实现了 `ToString` trait。这个 `impl` 块看起来像这样:
```rust,ignore
impl< T: Display > ToString for T {
// ...snip...
}
```
因为标准库有了这些 blanket implementation, 我们可以对任何实现了 `Display` trait 的类型调用由 `ToString` 定义的 `to_string` 方法。例如,可以将整型转换为对应的 `String` 值,因为整型实现了 `Display` :
```rust
let s = 3.to_string();
```
如果并不希望限制`largest`函数只能用于实现了`Copy` trait 的类型,我们可以在`T`的 trait bounds 中指定`Clone`而不是`Copy`,并克隆 slice 的每一个值使得`largest`函数拥有其所有权。但是使用`clone`函数潜在意味着更多的堆分配,而且堆分配在涉及大量数据时可能会相当缓慢。另一种`largest`的实现方式是返回 slice 中一个`T`值的引用。如果我们将函数返回值从`T`改为`& T`并改变函数体使其能够返回一个引用,我们将不需要任何`Clone`或`Copy`的 trait bounds 而且也不会有任何的堆分配。尝试自己实现这种替代解决方式吧!
blanket implementation 会出现在 trait 文档的 “Implementers” 部分。
trait 和 trait bounds 让我们使用泛型类型参数来减少重复,并仍然能够向编译器明确指定泛型类型需要拥有哪些行为。因为我们向编译器提供了 trait bounds 信息, 它就可以检查代码中所用到的具体类型是否提供了正确的行为。在动态类型语言中, 如果我们尝试调用一个类型并没有实现的方法, 会在运行时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复错误。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了,这样相比其他那些不愿放弃泛型灵活性的语言有更好的性能。
trait 和 trait bound 让我们使用泛型类型参数来减少重复,并仍然能够向编译器明确指定泛型类型需要拥有哪些行为。因为我们向编译器提供了 trait bound 信息, 它就可以检查代码中所用到的具体类型是否提供了正确的行为。在动态类型语言中, 如果我们尝试调用一个类型并没有实现的方法, 会在运行时出现错误。Rust 将这些错误移动到了编译时,甚至在代码能够运行之前就强迫我们修复错误。另外,我们也无需编写运行时检查行为的代码,因为在编译时就已经检查过了,这样相比其他那些不愿放弃泛型灵活性的语言有更好的性能。
这里还有一种泛型,我们一直在使用它甚至都没有察觉它的存在,这就是**生命周期**( *lifetimes*)。不同于其他泛型帮助我们确保类型拥有期望的行为,生命周期则有助于确保引用在我们需要他们的时候一直有效。让我们学习生命周期是如何做到这些的。
这里还有一种泛型,我们一直在使用它甚至都没有察觉它的存在,这就是 ** 生命周期**( *lifetimes*)。不同于其他泛型帮助我们确保类型拥有期望的行为,生命周期则有助于确保引用在我们需要他们的时候一直有效。让我们学习生命周期是如何做到这些的。