让我们看看一个需要诉诸于代码的场景,来考虑为何此时使用枚举更为合适且实用。假设我们要处理 IP 地址。目前被广泛使用的两个主要 IP 标准:IPv4(version four)和 IPv6(version six)。这是我们的程序可能会遇到的所有可能的 IP 地址类型:所以可以 **枚举** 出所有可能的值,这也正是此枚举名字的由来。
这个树展示了一些模块是如何被嵌入到另一个模块的(例如,`hosting` 嵌套在 `front_of_house` 中)。这个树还展示了一些模块是互为 *兄弟*(*siblings*)的,这意味着它们定义在同一模块中(`hosting` 和 `serving` 被一起定义在 `front_of_house` 中)。继续沿用家庭关系的比喻,如果一个模块 A 被包含在模块 B 中,我们将模块 A 称为模块 B 的 *子*(*child*),模块 B 则是模块 A 的 *父*(*parent*)。注意,整个模块树都植根于名为 `crate` 的隐式模块下。
这个树展示了一些模块是如何被嵌入到另一个模块的(例如,`hosting` 嵌套在 `front_of_house` 中)。这个树还展示了一些模块是互为 *兄弟*(*siblings*)的,这意味着它们定义在同一模块中(`hosting` 和 `serving` 被一起定义在 `front_of_house` 中)。继续沿用家庭关系的比喻,如果一个模块 A 被包含在模块 B 中,我们将模块 A 称为模块 B 的 *子*(*child*),模块 B 则是模块 A 的 *父*(*parent*)。注意,整个模块树都植根于名为 `crate` 的隐式模块下。
对于一个更全面的性能测试,将会检查不同长度的文本、不同的搜索单词、不同长度的单词和所有其他的可变情况。这里所要表达的是:迭代器,作为一个高级的抽象,被编译成了与手写的底层代码大体一致性能代码。迭代器是 Rust 的 **零成本抽象**(*zero-cost abstractions*)之一,它意味着抽象并不会引入运行时开销,它与本贾尼·斯特劳斯特卢普(C++ 的设计和实现者)在 “Foundations of C++”(2012)中所定义的 **零开销**(*zero-overhead*)如出一辙:
对于一个更全面的性能测试,将会检查不同长度的文本、不同的搜索单词、不同长度的单词和所有其他的可变情况。这里所要表达的是:迭代器,作为一个高级的抽象,被编译成了与手写的底层代码大体一致性能代码。迭代器是 Rust 的 **零成本抽象**(*zero-cost abstractions*)之一,它意味着抽象并不会引入运行时开销,它与本贾尼·斯特劳斯特卢普(C++ 的设计和实现者)在 “Foundations of C++”(2012)中所定义的 **零开销**(*zero-overhead*)如出一辙:
> In general, C++ implementations obey the zero-overhead principle: What you don’t use, you don’t pay for. And further: What you do use, you couldn’t hand code any better.
> In general, C++ implementations obey the zero-overhead principle: What you don't use, you don't pay for. And further: What you do use, you couldn't hand code any better.
首先让我们创建一个可运行的单线程 web server,不过在开始之前,我们将快速了解一下构建 web server 所涉及到的协议。这些协议的细节超出了本书的范畴,不过一个简单的概括会提供我们所需的信息。
web server 中涉及到的两个主要协议是 **超文本传输协议**(*Hypertext Transfer Protocol*,*HTTP*)和 **传输控制协议**(*Transmission Control Protocol*,*TCP*)。这两者都是 **请求-响应**(*request-response*)协议,也就是说,有 **客户端**(*client*)来初始化请求,并有 **服务端**(*server*)监听请求并向客户端提供响应。请求与响应的内容由协议本身定义。
web server 中涉及到的两个主要协议是 **超文本传输协议**(*Hypertext Transfer Protocol*,*HTTP*)和 **传输控制协议**(*Transmission Control Protocol*,*TCP*)。这两者都是 **请求-响应**(*request-response*)协议,也就是说,有 **客户端**(*client*)来初始化请求,并有 **服务端**(*server*)监听请求并向客户端提供响应。请求与响应的内容由协议本身定义。
目前我们的 web server 不管客户端请求什么都会返回相同的 HTML 文件。让我们增加在返回 HTML 文件前检查浏览器是否请求 */*,并在其请求任何其他内容时返回错误的功能。为此需要如示例 20-6 那样修改 `handle_connection`。新代码接收到的请求的内容与已知的 */* 请求的一部分做比较,并增加了 `if` 和 `else` 块来区别处理请求:
**线程池**(*thread pool*)是一组预先分配的等待或准备处理任务的线程。当程序收到一个新任务,线程池中的一个线程会被分配任务,这个线程会离开并处理任务。其余的线程则可用于处理在第一个线程处理任务的同时处理其他接收到的任务。当第一个线程处理完任务时,它会返回空闲线程池中等待处理新任务。线程池允许我们并发处理连接,增加 server 的吞吐量。
我们会将池中线程限制为较少的数量,以防拒绝服务(Denial of Service,DoS)攻击;如果程序为每一个接收的请求都新建一个线程,某人向 server 发起千万级的请求时会耗尽服务器的资源并导致所有请求的处理都被终止。
我们会将池中线程限制为较少的数量,以防拒绝服务(Denial of Service,DoS)攻击;如果程序为每一个接收的请求都新建一个线程,某人向 server 发起千万级的请求时会耗尽服务器的资源并导致所有请求的处理都被终止。