@ -2,7 +2,7 @@
> [ch11-01-writing-tests.md ](https://github.com/rust-lang/book/blob/main/src/ch11-01-writing-tests.md )
> [ch11-01-writing-tests.md ](https://github.com/rust-lang/book/blob/main/src/ch11-01-writing-tests.md )
> < br >
> < br >
> commit cc6a1ef2614aa94003566027b285b249ccf961f a
> commit b9a473ff80e72ed9a77f97a80799b5aff25b594 a
Rust 中的测试函数是用来验证非测试代码是否按照期望的方式运行的。测试函数体通常执行如下三种操作:
Rust 中的测试函数是用来验证非测试代码是否按照期望的方式运行的。测试函数体通常执行如下三种操作:
@ -22,7 +22,7 @@ Rust 中的测试函数是用来验证非测试代码是否按照期望的方式
让我们创建一个新的库项目 `adder` :
让我们创建一个新的库项目 `adder` :
```text
```console
$ cargo new adder --lib
$ cargo new adder --lib
Created library `adder` project
Created library `adder` project
$ cd adder
$ cd adder
@ -32,15 +32,8 @@ adder 库中 `src/lib.rs` 的内容应该看起来如示例 11-1 所示:
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-01/src/lib.rs}}
#[cfg(test)]
mod tests {
#[test]
fn it_works() {
assert_eq!(2 + 2, 4);
}
}
```
```
< span class = "caption" > 示例 11-1: 由 `cargo new` 自动生成的测试模块和函数</ span >
< span class = "caption" > 示例 11-1: 由 `cargo new` 自动生成的测试模块和函数</ span >
@ -51,22 +44,8 @@ mod tests {
`cargo test` 命令会运行项目中所有的测试,如示例 11-2 所示:
`cargo test` 命令会运行项目中所有的测试,如示例 11-2 所示:
```text
```console
$ cargo test
{{#include ../listings/ch11-writing-automated-tests/listing-11-01/output.txt}}
Compiling adder v0.1.0 (file:///projects/adder)
Finished dev [unoptimized + debuginfo] target(s) in 0.22 secs
Running target/debug/deps/adder-ce99bcc2479f4607
running 1 test
test tests::it_works ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
Doc-tests adder
running 0 tests
test result: ok. 0 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
```
```
< span class = "caption" > 示例 11-2: 运行自动生成测试的输出< / span >
< span class = "caption" > 示例 11-2: 运行自动生成测试的输出< / span >
@ -85,67 +64,30 @@ Cargo 编译并运行了测试。在 `Compiling`、`Finished` 和 `Running` 这
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-01-changing-test-name/src/lib.rs}}
#[cfg(test)]
mod tests {
#[test]
fn exploration() {
assert_eq!(2 + 2, 4);
}
}
```
```
并再次运行 `cargo test` 。现在输出中将出现 `exploration` 而不是 `it_works` :
并再次运行 `cargo test` 。现在输出中将出现 `exploration` 而不是 `it_works` :
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/no-listing-01-changing-test-name/output.txt}}
test tests::exploration ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
```
```
让我们增加另一个测试,不过这一次是一个会失败的测试!当测试函数中出现 panic 时测试就失败了。每一个测试都在一个新线程中运行,当主线程发现测试线程异常了,就将对应测试标记为失败。第九章讲到了最简单的造成 panic 的方法:调用 `panic!` 宏。写入新测试 `another` 后, `src/lib.rs` 现在看起来如示例 11-3 所示:
让我们增加另一个测试,不过这一次是一个会失败的测试!当测试函数中出现 panic 时测试就失败了。每一个测试都在一个新线程中运行,当主线程发现测试线程异常了,就将对应测试标记为失败。第九章讲到了最简单的造成 panic 的方法:调用 `panic!` 宏。写入新测试 `another` 后, `src/lib.rs` 现在看起来如示例 11-3 所示:
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust,panics
```rust,panics,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-03/src/lib.rs:here}}
#[cfg(test)]
mod tests {
#[test]
fn exploration() {
assert_eq!(2 + 2, 4);
}
#[test]
fn another() {
panic!("Make this test fail");
}
}
```
```
< span class = "caption" > 示例 11-3: 增加第二个因调用了 `panic!` 而失败的测试</ span >
< span class = "caption" > 示例 11-3: 增加第二个因调用了 `panic!` 而失败的测试</ span >
再次 `cargo test` 运行测试。输出应该看起来像示例 11-4, 它表明 `exploration` 测试通过了而 `another` 失败了:
再次 `cargo test` 运行测试。输出应该看起来像示例 11-4, 它表明 `exploration` 测试通过了而 `another` 失败了:
```text
```console
running 2 tests
{{#include ../listings/ch11-writing-automated-tests/listing-11-03/output.txt}}
test tests::exploration ... ok
test tests::another ... FAILED
failures:
---- tests::another stdout ----
thread 'tests::another' panicked at 'Make this test fail', src/lib.rs:10:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.
failures:
tests::another
test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
error: test failed
```
```
< span class = "caption" > 示例 11-4: 一个测试通过和一个测试失败的测试结果< / span >
< span class = "caption" > 示例 11-4: 一个测试通过和一个测试失败的测试结果< / span >
@ -164,19 +106,8 @@ error: test failed
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-05/src/lib.rs:here}}
#[derive(Debug)]
struct Rectangle {
width: u32,
height: u32,
}
impl Rectangle {
fn can_hold(& self, other: & Rectangle) -> bool {
self.width > other.width & & self.height > other.height
}
}
```
```
< span class = "caption" > 示例 11-5: 第五章中 `Rectangle` 结构体和其 `can_hold` 方法</ span >
< span class = "caption" > 示例 11-5: 第五章中 `Rectangle` 结构体和其 `can_hold` 方法</ span >
@ -185,20 +116,8 @@ impl Rectangle {
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-06/src/lib.rs:here}}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn larger_can_hold_smaller() {
let larger = Rectangle { width: 8, height: 7 };
let smaller = Rectangle { width: 5, height: 1 };
assert!(larger.can_hold(&smaller));
}
}
```
```
< span class = "caption" > 示例 11-6: 一个 `can_hold` 的测试,检查一个较大的矩形确实能放得下一个较小的矩形</ span >
< span class = "caption" > 示例 11-6: 一个 `can_hold` 的测试,检查一个较大的矩形确实能放得下一个较小的矩形</ span >
@ -207,84 +126,34 @@ mod tests {
我们将测试命名为 `larger_can_hold_smaller` ,并创建所需的两个 `Rectangle` 实例。接着调用 `assert!` 宏并传递 `larger.can_hold(&smaller)` 调用的结果作为参数。这个表达式预期会返回 `true` ,所以测试应该通过。让我们拭目以待!
我们将测试命名为 `larger_can_hold_smaller` ,并创建所需的两个 `Rectangle` 实例。接着调用 `assert!` 宏并传递 `larger.can_hold(&smaller)` 调用的结果作为参数。这个表达式预期会返回 `true` ,所以测试应该通过。让我们拭目以待!
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/listing-11-06/output.txt}}
test tests::larger_can_hold_smaller ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
```
```
它确实通过了!再来增加另一个测试,这一回断言一个更小的矩形不能放下一个更大的矩形:
它确实通过了!再来增加另一个测试,这一回断言一个更小的矩形不能放下一个更大的矩形:
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-02-adding-another-rectangle-test/src/lib.rs:here}}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn larger_can_hold_smaller() {
// --snip--
}
#[test]
fn smaller_cannot_hold_larger() {
let larger = Rectangle { width: 8, height: 7 };
let smaller = Rectangle { width: 5, height: 1 };
assert!(!smaller.can_hold(&larger));
}
}
```
```
因为这里 `can_hold` 函数的正确结果是 `false` ,我们需要将这个结果取反后传递给 `assert!` 宏。因此 `can_hold` 返回 `false` 时测试就会通过:
因为这里 `can_hold` 函数的正确结果是 `false` ,我们需要将这个结果取反后传递给 `assert!` 宏。因此 `can_hold` 返回 `false` 时测试就会通过:
```text
```console
running 2 tests
{{#include ../listings/ch11-writing-automated-tests/no-listing-02-adding-another-rectangle-test/output.txt}}
test tests::smaller_cannot_hold_larger ... ok
test tests::larger_can_hold_smaller ... ok
test result: ok. 2 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
```
```
两个通过的测试!现在让我们看看如果引入一个 bug 的话测试结果会发生什么。将 `can_hold` 方法中比较长度时本应使用大于号的地方改成小于号:
两个通过的测试!现在让我们看看如果引入一个 bug 的话测试结果会发生什么。将 `can_hold` 方法中比较长度时本应使用大于号的地方改成小于号:
```rust,not_desired_behavior
```rust,not_desired_behavior,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-03-introducing-a-bug/src/lib.rs:here}}
# #[derive(Debug)]
# struct Rectangle {
# width: u32,
# height: u32,
# }
// --snip--
impl Rectangle {
fn can_hold(& self, other: & Rectangle) -> bool {
self.width < other.width & & self . height > other.height
}
}
```
```
现在运行测试会产生:
现在运行测试会产生:
```text
```console
running 2 tests
{{#include ../listings/ch11-writing-automated-tests/no-listing-03-introducing-a-bug/output.txt}}
test tests::smaller_cannot_hold_larger ... ok
test tests::larger_can_hold_smaller ... FAILED
failures:
---- tests::larger_can_hold_smaller stdout ----
thread 'tests::larger_can_hold_smaller' panicked at 'assertion failed:
larger.can_hold(& smaller)', src/lib.rs:22:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.
failures:
tests::larger_can_hold_smaller
test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
```
```
我们的测试捕获了 bug! 因为 `larger.length` 是 8 而 `smaller.length` 是 5, `can_hold` 中的长度比较现在因为 8 不小于 5 而返回 `false` 。
我们的测试捕获了 bug! 因为 `larger.length` 是 8 而 `smaller.length` 是 5, `can_hold` 中的长度比较现在因为 8 不小于 5 而返回 `false` 。
@ -297,63 +166,30 @@ test result: FAILED. 1 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-07/src/lib.rs}}
pub fn add_two(a: i32) -> i32 {
a + 2
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_adds_two() {
assert_eq!(4, add_two(2));
}
}
```
```
< span class = "caption" > 示例 11-7: 使用 `assert_eq!` 宏测试 `add_two` 函数</ span >
< span class = "caption" > 示例 11-7: 使用 `assert_eq!` 宏测试 `add_two` 函数</ span >
测试通过了!
测试通过了!
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/listing-11-07/output.txt}}
test tests::it_adds_two ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
```
```
传递给 `assert_eq!` 宏的第一个参数 `4` ,等于调用 `add_two(2)` 的结果。测试中的这一行 `test tests::it_adds_two ... ok` 中 `ok` 表明测试通过!
传递给 `assert_eq!` 宏的第一个参数 `4` ,等于调用 `add_two(2)` 的结果。测试中的这一行 `test tests::it_adds_two ... ok` 中 `ok` 表明测试通过!
在代码中引入一个 bug 来看看使用 `assert_eq!` 的测试失败是什么样的。修改 `add_two` 函数的实现使其加 3:
在代码中引入一个 bug 来看看使用 `assert_eq!` 的测试失败是什么样的。修改 `add_two` 函数的实现使其加 3:
```rust,not_desired_behavior
```rust,not_desired_behavior,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-04-bug-in-add-two/src/lib.rs:here}}
pub fn add_two(a: i32) -> i32 {
a + 3
}
```
```
再次运行测试:
再次运行测试:
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/no-listing-04-bug-in-add-two/output.txt}}
test tests::it_adds_two ... FAILED
failures:
---- tests::it_adds_two stdout ----
thread 'tests::it_adds_two' panicked at 'assertion failed: `(left == right)`
left: `4` ,
right: `5` ', src/lib.rs:11:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.
failures:
tests::it_adds_two
test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
```
```
测试捕获到了 bug! `it_adds_two` 测试失败,显示信息 `` assertion failed: `(left == right)` `` 并表明 `left` 是 `4` 而 `right` 是 `5` 。这个信息有助于我们开始调试:它说 `assert_eq!` 的 `left` 参数是 `4` ,而 `right` 参数,也就是 `add_two(2)` 的结果,是 `5` 。
测试捕获到了 bug! `it_adds_two` 测试失败,显示信息 `` assertion failed: `(left == right)` `` 并表明 `left` 是 `4` 而 `right` 是 `5` 。这个信息有助于我们开始调试:它说 `assert_eq!` 的 `left` 参数是 `4` ,而 `right` 参数,也就是 `add_two(2)` 的结果,是 `5` 。
@ -372,72 +208,34 @@ test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-05-greeter/src/lib.rs}}
pub fn greeting(name: & str) -> String {
format!("Hello {}!", name)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn greeting_contains_name() {
let result = greeting("Carol");
assert!(result.contains("Carol"));
}
}
```
```
这个程序的需求还没有被确定,因此问候文本开头的 `Hello` 文本很可能会改变。然而我们并不想在需求改变时不得不更新测试,所以相比检查 `greeting` 函数返回的确切值,我们将仅仅断言输出的文本中包含输入参数。
这个程序的需求还没有被确定,因此问候文本开头的 `Hello` 文本很可能会改变。然而我们并不想在需求改变时不得不更新测试,所以相比检查 `greeting` 函数返回的确切值,我们将仅仅断言输出的文本中包含输入参数。
让我们通过将 `greeting` 改为不包含 `name` 来在代码中引入一个 bug 来测试失败时是怎样的:
让我们通过将 `greeting` 改为不包含 `name` 来在代码中引入一个 bug 来测试失败时是怎样的:
```rust,not_desired_behavior
```rust,not_desired_behavior,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-06-greeter-with-bug/src/lib.rs:here}}
pub fn greeting(name: & str) -> String {
String::from("Hello!")
}
```
```
运行测试会产生:
运行测试会产生:
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/no-listing-06-greeter-with-bug/output.txt}}
test tests::greeting_contains_name ... FAILED
failures:
---- tests::greeting_contains_name stdout ----
thread 'tests::greeting_contains_name' panicked at 'assertion failed:
result.contains("Carol")', src/lib.rs:12:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.
failures:
tests::greeting_contains_name
```
```
结果仅仅告诉了我们断言失败了和失败的行号。一个更有用的失败信息应该打印出 `greeting` 函数的值。让我们为测试函数增加一个自定义失败信息参数:带占位符的格式字符串,以及 `greeting` 函数的值:
结果仅仅告诉了我们断言失败了和失败的行号。一个更有用的失败信息应该打印出 `greeting` 函数的值。让我们为测试函数增加一个自定义失败信息参数:带占位符的格式字符串,以及 `greeting` 函数的值:
```rust,ignore
```rust,ignore
#[test]
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-07-custom-failure-message/src/lib.rs:here}}
fn greeting_contains_name() {
let result = greeting("Carol");
assert!(
result.contains("Carol"),
"Greeting did not contain name, value was `{}` ", result
);
}
```
```
现在如果再次运行测试,将会看到更有价值的信息:
现在如果再次运行测试,将会看到更有价值的信息:
```text
```console
---- tests::greeting_contains_name stdout ----
{{#include ../listings/ch11-writing-automated-tests/no-listing-07-custom-failure-message/output.txt}}
thread 'tests::greeting_contains_name' panicked at 'Greeting did not
contain name, value was `Hello!` ', src/lib.rs:12:9
note: Run with `RUST_BACKTRACE=1` for a backtrace.
```
```
可以在测试输出中看到所取得的确切的值,这会帮助我们理解真正发生了什么,而不是期望发生什么。
可以在测试输出中看到所取得的确切的值,这会帮助我们理解真正发生了什么,而不是期望发生什么。
@ -452,82 +250,28 @@ note: Run with `RUST_BACKTRACE=1` for a backtrace.
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-08/src/lib.rs}}
pub struct Guess {
value: i32,
}
impl Guess {
pub fn new(value: i32) -> Guess {
if value < 1 | | value > 100 {
panic!("Guess value must be between 1 and 100, got {}.", value);
}
Guess {
value
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic]
fn greater_than_100() {
Guess::new(200);
}
}
```
```
< span class = "caption" > 示例 11-8: 测试会造成 `panic!` 的条件</ span >
< span class = "caption" > 示例 11-8: 测试会造成 `panic!` 的条件</ span >
`#[should_panic]` 属性位于 `#[test]` 之后,对应的测试函数之前。让我们看看测试通过时它是什么样子:
`#[should_panic]` 属性位于 `#[test]` 之后,对应的测试函数之前。让我们看看测试通过时它是什么样子:
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/listing-11-08/output.txt}}
test tests::greater_than_100 ... ok
test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0 filtered out
```
```
看起来不错!现在在代码中引入 bug, 移除 `new` 函数在值大于 100 时会 panic 的条件:
看起来不错!现在在代码中引入 bug, 移除 `new` 函数在值大于 100 时会 panic 的条件:
```rust,not_desired_behavior
```rust,not_desired_behavior,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-08-guess-with-bug/src/lib.rs:here}}
# pub struct Guess {
# value: i32,
# }
#
// --snip--
impl Guess {
pub fn new(value: i32) -> Guess {
if value < 1 {
panic!("Guess value must be between 1 and 100, got {}.", value);
}
Guess {
value
}
}
}
```
```
如果运行示例 11-8 的测试,它会失败:
如果运行示例 11-8 的测试,它会失败:
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/no-listing-08-guess-with-bug/output.txt}}
test tests::greater_than_100 ... FAILED
failures:
failures:
tests::greater_than_100
test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
```
```
这回并没有得到非常有用的信息,不过一旦我们观察测试函数,会发现它标注了 `#[should_panic]` 。这个错误意味着代码中测试函数 `Guess::new(200)` 并没有产生 panic。
这回并没有得到非常有用的信息,不过一旦我们观察测试函数,会发现它标注了 `#[should_panic]` 。这个错误意味着代码中测试函数 `Guess::new(200)` 并没有产生 panic。
@ -536,40 +280,8 @@ test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
< span class = "filename" > 文件名: src/lib.rs< / span >
< span class = "filename" > 文件名: src/lib.rs< / span >
```rust
```rust,noplayground
# fn main() {}
{{#rustdoc_include ../listings/ch11-writing-automated-tests/listing-11-09/src/lib.rs:here}}
# pub struct Guess {
# value: i32,
# }
#
// --snip--
impl Guess {
pub fn new(value: i32) -> Guess {
if value < 1 {
panic!("Guess value must be greater than or equal to 1, got {}.",
value);
} else if value > 100 {
panic!("Guess value must be less than or equal to 100, got {}.",
value);
}
Guess {
value
}
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
#[should_panic(expected = "Guess value must be less than or equal to 100")]
fn greater_than_100() {
Guess::new(200);
}
}
```
```
< span class = "caption" > 示例 11-9: 一个会带有特定错误信息的 `panic!` 条件的测试</ span >
< span class = "caption" > 示例 11-9: 一个会带有特定错误信息的 `panic!` 条件的测试</ span >
@ -579,32 +291,13 @@ mod tests {
为了观察带有 `expected` 信息的 `should_panic` 测试失败时会发生什么,让我们再次引入一个 bug, 将 `if value < 1` 和 `else if value > 100` 的代码块对换:
为了观察带有 `expected` 信息的 `should_panic` 测试失败时会发生什么,让我们再次引入一个 bug, 将 `if value < 1` 和 `else if value > 100` 的代码块对换:
```rust,ignore,not_desired_behavior
```rust,ignore,not_desired_behavior
if value < 1 {
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-09-guess-with-panic-msg-bug/src/lib.rs:here}}
panic!("Guess value must be less than or equal to 100, got {}.", value);
} else if value > 100 {
panic!("Guess value must be greater than or equal to 1, got {}.", value);
}
```
```
这一次运行 `should_panic` 测试,它会失败:
这一次运行 `should_panic` 测试,它会失败:
```text
```console
running 1 test
{{#include ../listings/ch11-writing-automated-tests/no-listing-09-guess-with-panic-msg-bug/output.txt}}
test tests::greater_than_100 ... FAILED
failures:
---- tests::greater_than_100 stdout ----
thread 'tests::greater_than_100' panicked at 'Guess value must be
greater than or equal to 1, got 200.', src/lib.rs:11:13
note: Run with `RUST_BACKTRACE=1` for a backtrace.
note: Panic did not include expected string 'Guess value must be less than or
equal to 100'
failures:
tests::greater_than_100
test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
```
```
失败信息表明测试确实如期望 panic 了,不过 panic 信息中并没有包含 `expected` 信息 `'Guess value must be less than or equal to 100'` 。而我们得到的 panic 信息是 `'Guess value must be greater than or equal to 1, got 200.'` 。这样就可以开始寻找 bug 在哪了!
失败信息表明测试确实如期望 panic 了,不过 panic 信息中并没有包含 `expected` 信息 `'Guess value must be less than or equal to 100'` 。而我们得到的 panic 信息是 `'Guess value must be greater than or equal to 1, got 200.'` 。这样就可以开始寻找 bug 在哪了!
@ -613,32 +306,22 @@ test result: FAILED. 0 passed; 1 failed; 0 ignored; 0 measured; 0 filtered out
目前为止,我们编写的测试在失败时就会 panic。也可以使用 `Result<T, E>` 编写测试!这里是第一个例子采用了 Result:
目前为止,我们编写的测试在失败时就会 panic。也可以使用 `Result<T, E>` 编写测试!这里是第一个例子采用了 Result:
```rust
```rust,noplayground
#[cfg(test)]
{{#rustdoc_include ../listings/ch11-writing-automated-tests/no-listing-10-result-in-tests/src/lib.rs}}
mod tests {
#[test]
fn it_works() -> Result< (), String> {
if 2 + 2 == 4 {
Ok(())
} else {
Err(String::from("two plus two does not equal four"))
}
}
}
```
```
现在 `it_works` 函数的返回值类型为 `Result<(), String>` 。在函数体中,不同于调用 `assert_eq!` 宏,而是在测试通过时返回 `Ok(())` ,在测试失败时返回带有 `String` 的 `Err` 。
现在 `it_works` 函数的返回值类型为 `Result<(), String>` 。在函数体中,不同于调用 `assert_eq!` 宏,而是在测试通过时返回 `Ok(())` ,在测试失败时返回带有 `String` 的 `Err` 。
这样编写测试来返回 `Result<T, E>` 就可以在函数体中使用问号运算符,如此可以方便的编写任何运算符会返回 `Err` 成员的测试。
这样编写测试来返回 `Result<T, E>` 就可以在函数体中使用问号运算符,如此可以方便的编写任何运算符会返回 `Err` 成员的测试。
不能对这些使用 `Result<T, E>` 的测试使用 `#[should_panic]` 注解。相反应该在测试失败时直接返回 `Err` 值 。
不能对这些使用 `Result<T, E>` 的测试使用 `#[should_panic]` 注解。为了断言一个操作返回 `Err` 成员,**不要**使用对 `Result<T, E>` 值使用问好表达式(`?`)。而是使用 `assert!(value.is_err())` 。
现在你知道了几种编写测试的方法,让我们看看运行测试时会发生什么,和可以用于 `cargo test` 的不同选项。
现在你知道了几种编写测试的方法,让我们看看运行测试时会发生什么,和可以用于 `cargo test` 的不同选项。
[concatenation-with-the--operator-or-the-format-macro]:
[concatenation-with-the--operator-or-the-format-macro]:
ch08-02-strings.html#concatenation-with-the--operator-or-the-format-macro
ch08-02-strings.html#使用--运算符或-format-宏拼接字符串
[controlling-how-tests-are-run]:
[controlling-how-tests-are-run]:
ch11-02-running-tests.html#controlling-how-tests-are-run
ch11-02-running-tests.html#控制测试如何运行
[derivable-traits]: appendix-03-derivable-traits.html
[derivable-traits]: appendix-03-derivable-traits.html
[doc-comments]: ch14-02-publishing-to-crates-io.html#documentation-comments-as-tests
[doc-comments]: ch14-02-publishing-to-crates-io.html#文档注释作为测试
[paths-for-referring-to-an-item-in-the-module-tree]: ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html
[paths-for-referring-to-an-item-in-the-module-tree]: ch07-03-paths-for-referring-to-an-item-in-the-module-tree.html